Microbiological Performance of Dairy Processing Plants Is Influenced by Scale of Production and the Implemented Food Safety Management System: A Case Study

2013 ◽  
Vol 76 (6) ◽  
pp. 975-975 ◽  
Author(s):  
BEATRICE ATIENO OPIYO ◽  
JOHN WANGOH ◽  
PATRICK MURIGU KAMAU NJAGE

The effects of existing food safety management systems and size of the production facility on microbiological quality in the dairy industry in Kenya were studied. A microbial assessment scheme was used to evaluate 14 dairies in Nairobi and its environs, and their performance was compared based on their size and on whether they were implementing hazard analysis critical control point (HACCP) systems and International Organization for Standardization (ISO) 22000 recommendations. Environmental samples from critical sampling locations, i.e., workers' hands and food contact surfaces, and from end products were analyzed for microbial quality, including hygiene indicators and pathogens. Microbial safety level profiles (MSLPs) were constructed from the microbiological data to obtain an overview of contamination. The maximum MSLP score for environmental samples was 18 (six microbiological parameters, each with a maximum MSLP score of 3) and that for end products was 15 (five microbiological parameters). Three dairies (two large scale and one medium scale; 21% of total) achieved the maximum MSLP scores of 18 for environmental samples and 15 for the end product. Escherichia coli was detected on food contact surfaces in three dairies, all of which were small scale dairies, and the microorganism was also present in end product samples from two of these dairies, an indication of cross-contamination. Microbial quality was poorest in small scale dairies. Most operations in these dairies were manual, with minimal system documentation. Noncompliance with hygienic practices such as hand washing and cleaning and disinfection procedures, which is common in small dairies, directly affects the microbial quality of the end products. Dairies implementing HACCP systems or ISO 22000 recommendations achieved maximum MSLP scores and hence produced safer products.

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Niels Demaître ◽  
Geertrui Rasschaert ◽  
Lieven De Zutter ◽  
Annemie Geeraerd ◽  
Koen De Reu

The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.


2008 ◽  
Vol 25 (2) ◽  
pp. 313-323 ◽  
Author(s):  
Antonia S. Gounadaki ◽  
Panagiotis N. Skandamis ◽  
Eleftherios H. Drosinos ◽  
George-John E. Nychas

2018 ◽  
Vol 38 (4) ◽  
pp. e12480 ◽  
Author(s):  
Csaba Bálint Illés ◽  
András J. Tóth ◽  
Anna Dunay ◽  
József Lehota ◽  
András Bittsánszky

2013 ◽  
Author(s):  
Ruplal Choudhary ◽  
Victor Rodov ◽  
Punit Kohli ◽  
Elena Poverenov ◽  
John Haddock ◽  
...  

Original objectives The general goal of the project was to utilize the bactericidal potential of curcumin- functionalizednanostructures (CFN) for reinforcement of food safety by developing active antimicrobial food-contact surfaces. In order to reach the goal, the following secondary tasks were pursued: (a) further enhancement of the CFN activity based on understanding their mode of action; (b) preparing efficient antimicrobial surfaces, investigating and optimizing their performance; (c) testing the efficacy of the antimicrobial surfaces in real food trials. Background to the topic The project dealt with reducing microbial food spoilage and safety hazards. Cross-contamination through food-contact surfaces is one of the major safety concerns, aggravated by bacterial biofilm formation. The project implemented nanotech methods to develop novel antimicrobial food-contact materials based on natural compounds. Food-grade phenylpropanoidcurcumin was chosen as the most promising active principle for this research. Major conclusions, solutions, achievements In agreement with the original plan, the following research tasks were performed. Optimization of particles structure and composition. Three types of curcumin-functionalizednanostructures were developed and tested: liposome-type polydiacetylenenanovesicles, surface- stabilized nanoparticles and methyl-β-cyclodextrin inclusion complexes (MBCD). The three types had similar minimal inhibitory concentration but different mode of action. Nanovesicles and inclusion complexes were bactericidal while the nanoparticlesbacteriostatic. The difference might be due to different paths of curcumin penetration into bacterial cell. Enhancing the antimicrobial efficacy of CFN by photosensitization. Light exposure strengthened the bactericidal efficacy of curcumin-MBCD inclusion complexes approximately three-fold and enhanced the bacterial death on curcumin-coated plastic surfaces. Investigating the mode of action of CFN. Toxicoproteomic study revealed oxidative stress in curcumin-treated cells of E. coli. In the dark, this effect was alleviated by cellular adaptive responses. Under light, the enhanced ROS burst overrode the cellular adaptive mechanisms, disrupted the iron metabolism and synthesis of Fe-S clusters, eventually leading to cell death. Developing industrially-feasible methods of binding CFN to food-contact surfaces. CFN binding methods were developed for various substrates: covalent binding (binding nanovesicles to glass, plastic and metal), sonochemical impregnation (binding nanoparticles to plastics) and electrostatic layer-by-layer coating (binding inclusion complexes to glass and plastics). Investigating the performance of CFN-coated surfaces. Flexible and rigid plastic materials and glass coated with CFN demonstrated bactericidal activity towards Gram-negative (E. coli) and Gram-positive (Bac. cereus) bacteria. In addition, CFN-impregnated plastic material inhibited bacterial attachment and biofilm development. Testing the efficacy of CFN in food preservation trials. Efficient cold pasteurization of tender coconut water inoculated with E. coli and Listeriamonocytogeneswas performed by circulation through a column filled with CFN-coated glass beads. Combination of curcumin coating with blue light prevented bacterial cross contamination of fresh-cut melons through plastic surfaces contaminated with E. coli or Bac. licheniformis. Furthermore, coating of strawberries with CFN reduced fruit spoilage during simulated transportation extending the shelf life by 2-3 days. Implications, both scientific and agricultural BARD Report - Project4680 Page 2 of 17 Antimicrobial food-contact nanomaterials based on natural active principles will preserve food quality and ensure safety. Understanding mode of antimicrobial action of curcumin will allow enhancing its dark efficacy, e.g. by targeting the microbial cellular adaptation mechanisms. 


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1636
Author(s):  
Erica Tirloni ◽  
Cristian Bernardi ◽  
Francesco Pomilio ◽  
Marina Torresi ◽  
Enrico P. L. De Santis ◽  
...  

The present study evaluated the presence of Listeria spp. and L. monocytogenes in four plants producing PDO Taleggio cheese. A total of 360 environmental samples were collected from different areas during production. The sampling points were identified as Food Contact Surfaces (FCS), transfer-Non Food Contact Surfaces (tr-NFCS), and non-transfer-NFCS (non-tr-NFCS). Fifty-nine ingredients/products were also analyzed. Listeria spp. was found in all the plants with a mean prevalence of 23.1%; plants that included a ripening area showed significantly higher prevalence if compared to the other plants. The positivity rate detected on FCS was moderate (~12%), but significantly lower if compared to NFCS (about 1/4 of the samples, p < 0.01). Among the FCS, higher prevalence was revealed on ripening equipment. Listeria spp. was never detected in the ingredients or products. A total of 125 Listeria spp. isolates were identified, mostly as L. innocua (almost 80%). L. monocytogenes was detected only from two FCS samples, in an area dedicated to the cutting of ripened blue cheeses; strain characterization by whole genome sequencing (WGS) evidenced a low virulence of the isolates. The results of the present study stress the importance of Listeria spp. management in the dairy plants producing PDO Taleggio and similar cheeses, mainly by the application of strict hygienic practices.


2020 ◽  
Vol 10 (3) ◽  
pp. 744
Author(s):  
Fernando Lorenzo ◽  
Maria Sanz-Puig ◽  
Ramón Bertó ◽  
Enrique Orihuel

(1) Background: The validation of hygiene procedures in food industries is paramount to ensure that food contact surfaces are properly decontaminated before production. Rapid, sensitive and reliable tools are needed for routine hygiene validation in order to increase food safety levels. Two novel tools for biofilm detection (TBF 300) and detection of low levels of microbial contamination (FreshCheck) have been assessed. (2) Methods: Biofilms of relevant food pathogens: Listeria monocytogenes and Salmonella spp. were grown for 3 and 10 days to assess the performance of the biofilm detection product. Surfaces were inoculated with different levels of L. monocytogenes to determine the limit of detection of FreshCheck. (3) Results: TBF 300 visibly stained 3 days-old biofilms of both pathogens, containing 5.0–5.4 log CFU/cm2. FreshCheck showed a positive reaction with contamination levels as low as 10 CFU/cm2 for L. monocytogenes. (4) Conclusions: Assessment of the hygienic status of food contact surfaces before production can be greatly improved with the use of the two novel tools evaluated in this study. The detection of microorganisms’ presence at very low levels of contamination as well as identification of biofilm growth spots is available in a rapid and easy way, with a big potential contribution to food safety.


Food Control ◽  
2017 ◽  
Vol 73 ◽  
pp. 1474-1482 ◽  
Author(s):  
Diana Gutiérrez ◽  
Lorena Rodríguez-Rubio ◽  
Lucía Fernández ◽  
Beatriz Martínez ◽  
Ana Rodríguez ◽  
...  

2021 ◽  
Vol 854 (1) ◽  
pp. 012041
Author(s):  
J Jovanovic ◽  
A Nikolic ◽  
I Brankovic Lazic ◽  
B Mrdovic ◽  
M Raseta ◽  
...  

Abstract This research aimed to investigate the efficiency of sanitary procedures (cleaning, washing, disinfection) applied on food contact surfaces and food handlers’ hands in one retail chain in Serbia. For that reason, a total of 364 swabs of food contact surfaces and 86 food handlers’ hand swabs were investigated for microbiological parameters of process hygiene. The results showed that 15.66% (57 of 365) swabs of food contact surfaces, and 5.81% (5 of 86) swabs from the food handlers’ hands, failed to meet the criteria laid down in the self-control plans of the food business operators. Therefore, continuous training of employees on the proper application of sanitation procedures is essential for efficient GHP and HACCP.


Sign in / Sign up

Export Citation Format

Share Document