Retention of Rotavirus Infectivity in Mussels Heated by Using the French Recipe Moules Marinières

2015 ◽  
Vol 78 (11) ◽  
pp. 2064-2069 ◽  
Author(s):  
DORIS SOBRAL MARQUES SOUZA ◽  
TAKAYUKI MIURA ◽  
CÉCILE LE MENNEC ◽  
CÉLIA REGINA MONTE BARARDI ◽  
FRANÇOISE S. LE GUYADER

To evaluate the persistence of infectious virus after heating, mussels contaminated with a rotavirus strain were prepared following the French recipe moules marinières (mariner's mussels). Rotavirus was then quantified by real-time quantitative PCR (RT-qPCR) and a cell culture infectivity assay. Results showed the persistence of infectious virus after 3 min of cooking. After 5 min, when no infectious virus could be detected, the RT-qPCR approach showed a 1-log decrease compared with concentrations detected after 1 min of cooking.

2003 ◽  
Vol 49 (5) ◽  
pp. 719-726 ◽  
Author(s):  
Rossa W K Chiu ◽  
Lisa Y S Chan ◽  
Nicole Y L Lam ◽  
Nancy B Y Tsui ◽  
Enders K O Ng ◽  
...  

Abstract Background: Recent studies have demonstrated the existence of circulating mitochondrial DNA in plasma and serum, but the concentrations and physical characteristics of circulating mitochondrial DNA are unknown. The aim of this study was to develop an assay to quantify mitochondrial DNA in the plasma of healthy individuals. Methods: We adopted a real-time quantitative PCR approach and evaluated the specificity of the assay for detecting mitochondrial DNA with a cell line (ρ0) devoid of mitochondria. The concentrations and physical characteristics of circulating mitochondrial DNA were investigated by experiments conducted in three modules. In module 1, we evaluated the concentrations of mitochondrial DNA in plasma aliquots derived from four blood-processing protocols. In module 2, we investigated the existence of both particle-associated and free forms of mitochondrial DNA in plasma by subjecting plasma to filtration and ultracentrifugation. In module 3, we used filters with different pore sizes to investigate the size characteristics of the particle-associated fraction of circulating mitochondrial DNA. Results: The mitochondrial DNA-specific, real-time quantitative PCR had a dynamic range of five orders of magnitude and a sensitivity that enabled detection of one copy of mitochondrial DNA in plasma. In module 1, we found significant differences in the amounts of circulating mitochondrial DNA among plasma aliquots processed by different methods. Data from module 2 revealed that a significant fraction of mitochondrial DNA in plasma was filterable or pelletable by ultracentrifugation. Module 3 demonstrated that filters with different pore sizes removed mitochondrial DNA from plasma to different degrees. Conclusions: Both particle-associated and free mitochondrial DNA are present in plasma, and their respective concentrations are affected by the process used to harvest plasma from whole blood. These results may have implications in the design of future studies on circulating mitochondrial DNA measured in different disease conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew T. Meek ◽  
Nils M. Kronenberg ◽  
Andrew Morton ◽  
Philipp Liehm ◽  
Jan Murawski ◽  
...  

AbstractImportant dynamic processes in mechanobiology remain elusive due to a lack of tools to image the small cellular forces at play with sufficient speed and throughput. Here, we introduce a fast, interference-based force imaging method that uses the illumination of an elastic deformable microcavity with two rapidly alternating wavelengths to map forces. We show real-time acquisition and processing of data, obtain images of mechanical activity while scanning across a cell culture, and investigate sub-second fluctuations of the piconewton forces exerted by macrophage podosomes. We also demonstrate force imaging of beating neonatal cardiomyocytes at 100 fps which reveals mechanical aspects of spontaneous oscillatory contraction waves in between the main contraction cycles. These examples illustrate the wider potential of our technique for monitoring cellular forces with high throughput and excellent temporal resolution.


2006 ◽  
Vol 72 (12) ◽  
pp. 7894-7896 ◽  
Author(s):  
Silvia Bofill-Mas ◽  
Nestor Albinana-Gimenez ◽  
Pilar Clemente-Casares ◽  
Ayalkibet Hundesa ◽  
Jesus Rodriguez-Manzano ◽  
...  

ABSTRACT Human adenoviruses (HAdV) and human polyomavirus JCPyV have been previously proposed as indicators of fecal viral contamination in the environment. Different wastewater matrices have been analyzed by applying real-time quantitative PCR procedures for the presence, quantity, and stability of a wide diversity of excreted HAdV and JCPyV. High quantities of HAdV and JCPyV were detected in sewage, effluent wastewater, sludge, and biosolid samples. Both viruses showed high stability in urban sewage. These results confirm the suitability of both viruses as indicators of human fecal viral pollution.


Sign in / Sign up

Export Citation Format

Share Document