Screening of antifungal lactic acid bacteria as bioprotective cultures in yogurts and whey beverage

Author(s):  
Rihua Xu ◽  
Ren Sa ◽  
Junwei Jia ◽  
Lanlan Li ◽  
Xiao Wang ◽  
...  

The demand for “preservative-free” food products is rising, and biopreservation seems to be a potential alternative to replace or reduce the use of chemical preservatives. This study’s objective was to assess the antifungal activity of lactic acid bacteria (LAB) (n = 98) and the efficacy and applicability of the chosen bioprotective cultures against fungal spoilers in dairy products. First, 14 strains of antifungal strains were preliminarily screened by in vitro tests against Pichia pastoris D3, Aspergillus niger D1, Geotrichum candidum N1, Kluyveromyces marxianus W1, and Penicillium chrysogenum B1 and validated by challenge tests in yogurts, indicating that the fungal-inhibiting activity of LAB was species specific and yogurts fermented with antifungal LAB cultures were more effective in extending the shelf life. Secondly, the chosen 14 LAB strains were identified by the 16SrDNA sequence analysis and carbohydrate fermentation test. The results were as follows: 9 strains were Lactobacillus plantarum , 3 were Lactobacillus paracasei , 1 was Enterococus faecium , and 1 was Lactobacillus rhamnosus. Among them, active L. plantarum N7 was the chosen and studied factor that affects the antifungal activity using the response surface methodology (RSM). Finally, in situ tests were conducted to validate the activity of L. plantarum N7 in actual dairy products (whey beverage). Physicochemical and microbial indices of whey beverage during storage period exhibited that antifungal L. plantarum N7 could slow the fungal growth and be candidates of interest for industrial applications.

2021 ◽  
Vol 72 (1) ◽  
pp. e400
Author(s):  
F. Panebianco ◽  
A. Caridi

The anti-mold activity of 397 strains of lactic acid bacteria was evaluated using both the spot method in Petri plates and coculture in liquid medium. The study led to the selection of 34 strains isolated from table olives or olive brines, 15 strains from dairy products, and 10 strains from sourdoughs, all able to inhibit a strain of Penicillium crustosum and/or a strain of Aspergillus section Nidulantes, prevailing in two Calabrian olive brines. Seven representative strains were identified as Lactobacillus pentosus (four strains) and Lactobacillus sanfranciscensis (three strains) and are currently under testing for their antifungal activity during table olive fermentation. This research constitutes an initial contribution to the control of fungal growth and mycotoxin accumulation during table olive fermentation. The selected strains could be used as adjunct cultures in table olive fermentation, allowing for the biological control of table olive safety.


Mljekarstvo ◽  
2021 ◽  
Vol 72 (1) ◽  
pp. 22-32
Author(s):  
Sine Ozmen-Togay ◽  

Probiotic dairy products must contain a certain level of live probiotic microorganisms at the time of consumption. The number of live microorganisms in kefir culture, which is a mixture of different microorganisms, may change during storage due to various factors. In this study, the effects of adding a novel ingredient coffee bean membrane (CSS-coffee silverskin), on the viability of microorganisms contained in kefir culture were investigated. For this purpose, CSS obtained from 2 different coffee varieties (Arabica and Robusta) was added to kefir samples at 3 different concentrations (0.5, 0.75 and 1.0 %) at the beginning of fermentation. It was observed that especially the addition of CSS belonging to the Robusta variety significantly increased the viability of lactic acid bacteria (lactobacilli and lactococci) which accounted for 88-94.10 % and 82.37-92.44 % respectively. During the storage period of 28 days at 4 °C; it could be observed that kefir enrichment with CSS of both coffee varieties increased the viability of lactobacilli and lactococci after in-vitro digestion, depending on the rate of supplementation. Number of yeasts was decreased during the storage.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 285
Author(s):  
Fernando H. Ranjith ◽  
Belal J. Muhialdin ◽  
Noor L. Yusof ◽  
Nameer K. Mohammed ◽  
Muhammad H. Miskandar ◽  
...  

Background: the antagonism activity of lactic acid bacteria metabolites has the potential to prevent fungal growth on mango. Methods: the potential of developing natural disinfectant while using watermelon rinds (WR), pineapple (PP), orange peels (OP), palm kernel cake (PKC), and rice bran (RB), via lacto-fermentation was investigated. The obtained lactic acid bacteria (LAB) metabolites were then employed and the in vitro antifungal activity toward five spoilage fungi of mango was tested through liquid and solid systems. Besides, the effect of the produced disinfectant on the fungal growth inhibition and quality of mango was investigated. Results: the strains Lactobacillus plantarum ATCC8014 and Lactobacillus fermentum ATCC9338 growing in the substrates PKC and PP exhibited significantly higher in vitro antifungal activity against Colletotrichum gloeosporioides and Botryodiplodia theobromae as compared to other tested LAB strains and substrates. The in-situ results demonstrated that mango samples that were treated with the disinfectant produced from PKC fermented with L. plantarum and L. fermentum had the lowest disease incidence and disease severity index after 16 days shelf life, as well as the lowest conidial concentration. Furthermore, PKC that was fermented by L. fermentum highly maintained the quality of the mango. Conclusions: lactic acid fermentation of PKC by L. fermentum demonstrated a high potential for use as a natural disinfectant to control C. gloeosporioides and B. theobromae on mango.


2020 ◽  
Vol 47 (2) ◽  
pp. 119-129
Author(s):  
Mirjana Grujović ◽  
Katarina Mladenović ◽  
Ljiljana Čomić

In this paper, the effect of different temperatures, pH, and NaCl concentration on the growth of autochthonous lactic acid bacteria isolated from traditionally made Serbian cheese (Sokobanja area) was investigated by using the spectrophotometric method. Growth of tested Lactobacillus (Lb. fermentum, Lb. plantarum, and Lb. brevis) and Lactococcus lactis subsp. lactis biovar. diacetylactis five isolates were better in acidic pH, while the growth of Enterococcus isolates (E. durans, E. faecium, and E. faecalis) was better in basic pH, at 37 °C. At 4 °C after 24 h, none of the tested bacteria showed growth. Since the autochthonous isolates were tolerant to a tested range of dairy processing conditions, further studies need to include the characterization of enzymatic activity of selected isolates, as well as the ability to use these isolates like starter cultures or food supplements in dairy or non-dairy products.


Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
Miloslava Kavková ◽  
Jaromír Cihlář ◽  
Vladimír Dráb ◽  
Olga Bazalová ◽  
Zuzana Dlouhá

Yeast diversity in the cheese manufacturing process and in the cheeses themselves includes indispensable species for the production of specific cheeses and undesired species that cause cheese defects and spoilage. The control of yeast contaminants is problematic due to limitations in sanitation methods and chemicals used in the food industry. The utilisation of lactic acid bacteria and their antifungal products is intensively studied. Lactiplantibacillus plantarum is one of the most frequently studied species producing a wide spectrum of bioactive by-products. In the present study, twenty strains of L. plantarum from four sources were tested against 25 species of yeast isolated from cheeses, brines, and dairy environments. The functional traits of L. plantarum strains, such as the presence of class 2a bacteriocin and chitinase genes and in vitro production of organic acids, were evaluated. The extracellular production of bioactive peptides and proteins was tested using proteomic methods. Antifungal activity against yeast was screened using in vitro tests. Testing of antifungal activity on artificial media and reconstituted milk showed significant variability within the strains of L. plantarum and its group of origin. Strains from sourdoughs (CCDM 3018, K19-3) and raw cheese (L12, L24, L32) strongly inhibited the highest number of yeast strains on medium with reconstituted milk. These strains showed a consistent spectrum of genes belonging to class 2a bacteriocins, the gene of chitinase and its extracellular product 9 LACO Chitin-binding protein. Strain CCDM 3018 with the spectrum of class 2a bacteriocin gene, chitinase and significant production of lactic acid in all media performed significant antifungal effects in artificial and reconstituted milk-based media.


Author(s):  
Mercy Aboh ◽  
Ngozi Amaeze ◽  
Ijeoma Ikeji ◽  
Peters Oladosu

Increasing consumer demand for natural products have renewed food industry attention in bio preservation. Lactic acid bacteria are of particular interest as effective alternative to chemical preservation because of their food grade status. This work explores the effect of antifungal compounds produced by isolates of Lactobacillus sp on some selected pathogenic fungi growth. Samples of diary and fermented products were purchased from commercial vendors within the Federal Capital Territory (FCT) and screened for the presence of Lactobacillus sp. The Lactobacillus sp isolated were screened for antifungal activity against Aspergillus fumigatus, Candida albicans and Trichophyton rubrum using a dual culture assay. Strains with antifungal activity were identified and the fungal inhibitory activity was further evaluated. The effect of abiotic factors on the antifungal activity was evaluated by overlay assay under different temperature and pH. Majority of the identified isolates belonged to the genus Lactobacillus. Lactobacillus sp. produced antifungal compounds under different temperatures (25ºC, 30ºC and 37ºC). The antifungal compounds produced by Lactobacillus strains showed greater inhibitory activity on Aspergillus fumigatus. At 30ºC the percentage zones of inhibition range were 44.4%- 60.4%. All isolates showed stronger antifungal activity when grown at pH 4.0 and 5.0. At a pH 2.0 there was a total inhibition of fungal growth however, there was no inhibition of fungal growth at the pH 7.0. Lactic acid bacteria can be employed as effective alternative to chemical preservatives in food. Temperature and pH of the culture medium could influence the production of antifungal compounds by lactic acid bacteria.


2020 ◽  
Vol 8 (9) ◽  
pp. 1322
Author(s):  
Rosa Schettino ◽  
Erica Pontonio ◽  
Marco Gobbetti ◽  
Carlo Giuseppe Rizzello

Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate.


Food Control ◽  
2016 ◽  
Vol 67 ◽  
pp. 273-277 ◽  
Author(s):  
Federica Saladino ◽  
Carlos Luz ◽  
Lara Manyes ◽  
Mónica Fernández-Franzón ◽  
Giuseppe Meca

Food Control ◽  
2010 ◽  
Vol 21 (2) ◽  
pp. 136-142 ◽  
Author(s):  
K. Voulgari ◽  
M. Hatzikamari ◽  
A. Delepoglou ◽  
P. Georgakopoulos ◽  
E. Litopoulou-Tzanetaki ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Sabrina Strafella ◽  
David J. Simpson ◽  
Mohammad Yaghoubi Khanghahi ◽  
Maria De Angelis ◽  
Michael Gänzle ◽  
...  

This study aimed to isolate lactic acid bacteria (LAB) from wheat rhizosphere, to characterize their in vitro plant growth promoting activities and to differentiate plant-associated LAB from those associated with foods or human disease through comparative genomic analysis. Lactococcus lactis subsp. lactis and Enterococcus faecium were isolated using de Man-Rogosa-Sharpe (MRS) and Glucose Yeast Peptone (GYP) as enrichment culture media. Comparative genomic analyses showed that plant-associated LAB strains were enriched in genes coding for bacteriocin production when compared to strains from other ecosystems. Isolates of L. lactis and E. faecium did not produce physiologically relevant concentrations of the phyto-hormone indolacetic acid. All isolates solubilized high amount of phosphate and 12 of 16 strains solubilized potassium. E. faecium LB5, L. lactis LB6, LB7, and LB9 inhibited the plant pathogenic Fusarium graminearum to the same extent as two strains of Bacillus sp. However, the antifungal activity of the abovementioned LAB strains depended on the medium of cultivation and a low pH while antifungal activity of Bacillus spp. was independent of the growth medium and likely relates to antifungal lipopeptides. This study showed the potential of rhizospheric LAB for future application as biofertilizers in agriculture.


Sign in / Sign up

Export Citation Format

Share Document