In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement

Food Control ◽  
2016 ◽  
Vol 67 ◽  
pp. 273-277 ◽  
Author(s):  
Federica Saladino ◽  
Carlos Luz ◽  
Lara Manyes ◽  
Mónica Fernández-Franzón ◽  
Giuseppe Meca
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 285
Author(s):  
Fernando H. Ranjith ◽  
Belal J. Muhialdin ◽  
Noor L. Yusof ◽  
Nameer K. Mohammed ◽  
Muhammad H. Miskandar ◽  
...  

Background: the antagonism activity of lactic acid bacteria metabolites has the potential to prevent fungal growth on mango. Methods: the potential of developing natural disinfectant while using watermelon rinds (WR), pineapple (PP), orange peels (OP), palm kernel cake (PKC), and rice bran (RB), via lacto-fermentation was investigated. The obtained lactic acid bacteria (LAB) metabolites were then employed and the in vitro antifungal activity toward five spoilage fungi of mango was tested through liquid and solid systems. Besides, the effect of the produced disinfectant on the fungal growth inhibition and quality of mango was investigated. Results: the strains Lactobacillus plantarum ATCC8014 and Lactobacillus fermentum ATCC9338 growing in the substrates PKC and PP exhibited significantly higher in vitro antifungal activity against Colletotrichum gloeosporioides and Botryodiplodia theobromae as compared to other tested LAB strains and substrates. The in-situ results demonstrated that mango samples that were treated with the disinfectant produced from PKC fermented with L. plantarum and L. fermentum had the lowest disease incidence and disease severity index after 16 days shelf life, as well as the lowest conidial concentration. Furthermore, PKC that was fermented by L. fermentum highly maintained the quality of the mango. Conclusions: lactic acid fermentation of PKC by L. fermentum demonstrated a high potential for use as a natural disinfectant to control C. gloeosporioides and B. theobromae on mango.


2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Sabrina Strafella ◽  
David J. Simpson ◽  
Mohammad Yaghoubi Khanghahi ◽  
Maria De Angelis ◽  
Michael Gänzle ◽  
...  

This study aimed to isolate lactic acid bacteria (LAB) from wheat rhizosphere, to characterize their in vitro plant growth promoting activities and to differentiate plant-associated LAB from those associated with foods or human disease through comparative genomic analysis. Lactococcus lactis subsp. lactis and Enterococcus faecium were isolated using de Man-Rogosa-Sharpe (MRS) and Glucose Yeast Peptone (GYP) as enrichment culture media. Comparative genomic analyses showed that plant-associated LAB strains were enriched in genes coding for bacteriocin production when compared to strains from other ecosystems. Isolates of L. lactis and E. faecium did not produce physiologically relevant concentrations of the phyto-hormone indolacetic acid. All isolates solubilized high amount of phosphate and 12 of 16 strains solubilized potassium. E. faecium LB5, L. lactis LB6, LB7, and LB9 inhibited the plant pathogenic Fusarium graminearum to the same extent as two strains of Bacillus sp. However, the antifungal activity of the abovementioned LAB strains depended on the medium of cultivation and a low pH while antifungal activity of Bacillus spp. was independent of the growth medium and likely relates to antifungal lipopeptides. This study showed the potential of rhizospheric LAB for future application as biofertilizers in agriculture.


2020 ◽  
Vol 8 (8) ◽  
pp. 1199
Author(s):  
Daniela Bassi ◽  
Simona Gazzola ◽  
Eleonora Sattin ◽  
Fabio Dal Bello ◽  
Barbara Simionati ◽  
...  

Lactic acid bacteria (LAB) have a strong mitigation potential as adjunct cultures to inhibit undesirable bacteria in fermented foods. In fresh cheese with low salt concentration, spoilage and pathogenic bacteria can affect the shelf life with smear on the surface and packaging blowing. In this work, we studied the spoilage microbiota of an Italian fresh cheese to find tailor-made protective cultures for its shelf life improvement. On 14-tested LAB, three of them, namely Lacticaseibacillus rhamnosus LRH05, Latilactobacillus sakei LSK04, and Carnobacterium maltaromaticum CNB06 were the most effective in inhibiting Gram-negative bacteria. These cultures were assessed by the cultivation-dependent and DNA metabarcoding approach using in vitro experiments and industrial trials. Soft cheese with and without adjunct cultures were prepared and stored at 8 and 14 °C until the end of the shelf life in modified atmosphere packaging. Data demonstrated that the use of adjunct cultures reduce and/or modulate the growth of spoilage microbiota at both temperatures. Particularly, during industrial experiments, C. maltaromaticum CNB06 and Lcb. rhamnosus RH05 lowered psychrotrophic bacteria of almost 3 Log CFU/g in a 5-week stored cheese. On the contrary, Llb. sakei LSK04 was able to colonize the cheese but it was not a good candidate for its inhibition capacity. The combined approach applied in this work allowed to evaluate the protective potential of LAB strains against Gram-negative communities.


Author(s):  
Elif Canpolat ◽  
Müzeyyen Müge Doğaner ◽  
Sibel Derviş ◽  
Çiğdem Ulubaş Serçe

Developing as an alternative plant disease control method by using beneficial microorganisms and their metabolites has gained so much importance in recent years. In this study, the possibilities of using microorganisms which have potential antimicrobial effects on controlling soil-borne fungi at strawberry production were investigated. Effects of different lactic acid bacteria (LAB) strains on the development of several soil-borne fungi were studied in vitro and in vivo. LAB were screened for antifungal activity by using cell free supernatant against Fusarium sp., Rhizoctonia sp., Macrophomina sp., Botrytis sp., Phtopythium sp., Cylindrocarpon sp. and Pestalotiopsis sp. Cell free supernatant of LAB isolates showed promising antifungal activity. In vitro effective strains of LAB were tested in pot experiments to search their effects on disease development and plant growth. While the antifungal effects of all LAB strains tested in vitro experiments exhibited promising results, in vivo experiments revealed similar effects on different fungi genera.


Author(s):  
Rihua Xu ◽  
Ren Sa ◽  
Junwei Jia ◽  
Lanlan Li ◽  
Xiao Wang ◽  
...  

The demand for “preservative-free” food products is rising, and biopreservation seems to be a potential alternative to replace or reduce the use of chemical preservatives. This study’s objective was to assess the antifungal activity of lactic acid bacteria (LAB) (n = 98) and the efficacy and applicability of the chosen bioprotective cultures against fungal spoilers in dairy products. First, 14 strains of antifungal strains were preliminarily screened by in vitro tests against Pichia pastoris D3, Aspergillus niger D1, Geotrichum candidum N1, Kluyveromyces marxianus W1, and Penicillium chrysogenum B1 and validated by challenge tests in yogurts, indicating that the fungal-inhibiting activity of LAB was species specific and yogurts fermented with antifungal LAB cultures were more effective in extending the shelf life. Secondly, the chosen 14 LAB strains were identified by the 16SrDNA sequence analysis and carbohydrate fermentation test. The results were as follows: 9 strains were Lactobacillus plantarum , 3 were Lactobacillus paracasei , 1 was Enterococus faecium , and 1 was Lactobacillus rhamnosus. Among them, active L. plantarum N7 was the chosen and studied factor that affects the antifungal activity using the response surface methodology (RSM). Finally, in situ tests were conducted to validate the activity of L. plantarum N7 in actual dairy products (whey beverage). Physicochemical and microbial indices of whey beverage during storage period exhibited that antifungal L. plantarum N7 could slow the fungal growth and be candidates of interest for industrial applications.


2005 ◽  
Vol 34 (1) ◽  
pp. 91-99 ◽  
Author(s):  
K. Szekér ◽  
J. Beczner ◽  
A. Halász ◽  
Á. Mayer ◽  
J.M. Rezessy-Szabó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document