scholarly journals Effects of acids used in the microabrasion technique: Microhardness and confocal microscopy analysis

2015 ◽  
pp. e506-e512 ◽  
Author(s):  
NIP Pini ◽  
DANL Lima ◽  
GMB Ambrosano ◽  
WJ da Silva ◽  
FHB Aguiar ◽  
...  
2012 ◽  
Vol 43 (4) ◽  
pp. 319-322 ◽  
Author(s):  
Manuel Ramírez ◽  
Everardo Hernández-Quintela ◽  
Ramón Naranjo-Tackman

1991 ◽  
Vol 112 (3) ◽  
pp. 385-395 ◽  
Author(s):  
R M Lynch ◽  
K E Fogarty ◽  
F S Fay

Hexokinase isozyme I is proposed to be associated with mitochondria in vivo. Moreover, it has been suggested that this association is modulated in coordination with changes in cell metabolic state. To test these hypotheses, we analyzed the subcellular distribution of hexokinase relative to mitochondria in paraformaldehyde-fixed astrocytes using immunocytochemistry and quantitative three-dimensional confocal microscopy. Analysis of the extent of colocalization between hexokinase and mitochondria revealed that approximately 70% of cellular hexokinase is associated with mitochondria under basal metabolic conditions. In contrast to the immunocytochemical studies, between 15 to 40% of cellular hexokinase was found to be associated with mitochondria after fractionation of astrocyte cultures depending on the exact fractionation conditions. The discrepancy between fractionation studies and those based on imaging of distributions in fixed cells indicates the usefulness of using techniques that can evaluate the distributions of "cytosolic" enzymes in cells whose subcellular ultrastructure is not severely disrupted. To determine if hexokinase distribution is modulated in concert with changes in cell metabolism, the localization of hexokinase with mitochondria was evaluated after inhibition of glucose metabolism with 2-deoxyglucose. After incubation with 2-deoxyglucose there was an approximate 35% decrease in the amount of hexokinase associated with mitochondria. These findings support the hypothesis that hexokinase is bound to mitochondria in rat brain astrocytes in vivo, and that this association is sensitive to cell metabolic state.


Author(s):  
Mariana Pérez-Ibarreche ◽  
Des Field ◽  
R. Paul Ross ◽  
Colin Hill

Antimicrobial peptides are evolving as novel therapeutic options against the increasing problem of multidrug-resistant microorganisms, and nisin is one such avenue. However, some bacteria possess a specific nisin resistance system (NSR) which cleaves the peptide reducing its bactericidal efficacy. NSR-based resistance was identified in strains of Streptococcus uberis , a ubiquitous pathogen that causes mastitis in dairy cattle. Previous studies have demonstrated that a nisin A derivative termed nisin PV, featuring S29P and I30V, exhibits enhanced resistance to proteolytic cleavage by NSR. Our objective was to investigate the ability of this nisin derivative to eradicate and inhibit biofilms of S. uberis DPC 5344 and S. uberis ATCC 700407 ( nsr+ ) using crystal violet (biomass), XTT (viability) assays and confocal microscopy (viability and architecture). When pre-established biofilms were assessed, over 60% of the biofilm biomass was reduced by both peptides compared to the untreated controls. However, a 42% higher reduction in viability was observed following treatment with nisin PV compared to nisin A. Accordingly, confocal microscopy analysis revealed significantly more dead cells on the biofilm upper surface and a reduced thickness following treatment with nisin PV. When biofilm inhibition was assessed, nisin PV inhibited biofilm formation and decrease viability up to 56% and 85% more than nisin A, respectively. Confocal microscopy analysis revealed a lack of biofilm for S. uberis ATCC 700407 and only dead cells for S. uberis DPC 5344. These results suggest that nisin PV is a promising alternative to effectively reduce the biofilm formation of S. uberis strains carrying NSR. IMPORTANCE. One of the four most prevalent species of bovine mastitis-causing pathogens is S. uberis. Its ability to form biofilms confers on the bacteria greater resistance to antibiotics requiring higher doses to be more effective. In a bid to limit antibiotic resistance development, the need for alternative antimicrobials is paramount. Bacteriocins such as nisin represent one such alternative that could alleviate the impact of mastitis caused by S. uberis. However, many strains of S. uberis have been shown to possess nisin resistance determinants such as the nisin resistance protein (NSR). In this study, we demonstrate the ability of nisin and a nisin derivative termed PV that is insensitive to NSR to prevent and remove biofilms of NSR-producing S. uberis strains. These findings will add new information to the antimicrobial, bacteriocins and control of S. uberis research fields specifically in relation to biofilms and nsr + mastitis-associated strains.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
John J Gildea ◽  
Dylan T Lahiff ◽  
Staci A Keene ◽  
Robert E Van Sciver ◽  
Robert M Carey ◽  
...  

Salt-sensitivity of blood pressure (BP) is a cardiovascular risk that affects 25% of the world’s population due to its resulting hypertension, although independent of BP. Salt-sensitivity is detected with a two week controlled diet, which is difficult to administer in the clinical setting. We therefore developed a rapid method of diagnosis based on exfoliated renal proximal tubule cells (RPTC) in urine. Subjects were divided into 3 salt sensitivity index categories: High-Salt-Sensitive (HSS; ≥ 7 mmHg increase in mean arterial pressure (MAP) on a high salt diet of 300 mEq of sodium, 17%prevalence), Low-Salt-Sensitive (LSS; ≥ 7 mmHg increase in MAP on a low salt diet of 10 mEq of sodium, 11% prevalence) and Salt Resistant (SR; ≤ 7 mmHg increase in MAP on both high and low salt diets, 72% prevalence) (Carey et al., in review). Three individuals were analyzed in each category on a minimum of 3 separate occasions. Cells were isolated from urine using centrifugation and measured for dopamine-1 receptor (D1R) plasma membrane recruitment using fluorescently-labeled antibodies under a confocal microscope as well as in a flow cytometer. Confocal microscopy analysis (total of 100 RPTCs for the 9 subjects) showed a negative correlation between salt-sensitivity index and D1R surface recruitment in RPTCs in their response to salt stimulation (y = -0.0073x + 0.5248, p = 0.0159). Flow cytometry analysis (total of 4938 RPTCs for the 9 subjects) also demonstrated a negative correlation between salt-induced D1R recruitment and salt-sensitivity (y = -2.547x + 239.97, p < 0.0001). Flow cytometry analysis showed a greater degree of separation amongst the subjects than confocal microscopy analysis, and would allow for a rapid diagnostic use of exfoliated renal cells in urine. Cryopreserved RPTCs (viability = 57.16% ± 9.15%, n = 12) compare favorably with cell viability from freshly voided urine cells and were still capable of eliciting intracellular sodium-mediated D1R recruitment. Cryopreservation thus enables batch collection, transport and processing of specimens between sites. We expect these procedures to provide a novel and convenient method of diagnosing the salt-sensitivity index in humans.


2017 ◽  
Vol 24 (1) ◽  
pp. 9-15 ◽  
Author(s):  
M. Agozzino ◽  
A. Ferrari ◽  
C. Cota ◽  
C. Franceschini ◽  
P. Buccini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document