The role of disturbance and succession in ecosystem functioning

Ecosystems ◽  
2008 ◽  
pp. 117-131
mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Jizhong Zhou ◽  
Wenzong Liu ◽  
Ye Deng ◽  
Yi-Huei Jiang ◽  
Kai Xue ◽  
...  

ABSTRACTThe processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions. Under identical environmental conditions with the same source community, ecological drift (i.e., initial stochastic colonization) and subsequent biotic interactions created dramatically different communities with little overlap among 14 identical reactors, indicating that stochastic assembly played dominant roles in determining microbial community structure. Neutral community modeling analysis revealed that deterministic factors also played significant roles in shaping microbial community structure in these reactors. Most importantly, the newly formed communities differed substantially in community functions (e.g., H2production), which showed strong linkages to community structure. This study is the first to demonstrate that stochastic assembly plays a dominant role in determining not only community structure but also ecosystem functions. Elucidating the links among community assembly, biodiversity, and ecosystem functioning is critical to understanding ecosystem functioning, biodiversity preservation, and ecosystem management.IMPORTANCEMicroorganisms are the most diverse group of life known on earth. Although it is well documented that microbial natural biodiversity is extremely high, it is not clear why such high diversity is generated and maintained. Numerous studies have established the roles of niche-based deterministic factors (e.g., pH, temperature, and salt) in shaping microbial biodiversity, the importance of stochastic processes in generating microbial biodiversity is rarely appreciated. Moreover, while microorganisms mediate many ecosystem processes, the relationship between microbial diversity and ecosystem functioning remains largely elusive. Using a well-controlled laboratory system, this study provides empirical support for the dominant role of stochastic assembly in creating variations of microbial diversity and the first explicit evidence for the critical role of community assembly in influencing ecosystem functioning. The results presented in this study represent important contributions to the understanding of the mechanisms, especially stochastic processes, involved in shaping microbial biodiversity.


2019 ◽  
Vol 286 (1913) ◽  
pp. 20191857 ◽  
Author(s):  
Anita Narwani ◽  
Marta Reyes ◽  
Aaron Louis Pereira ◽  
Hannele Penson ◽  
Stuart R. Dennis ◽  
...  

A major challenge in ecology is to understand determinants of ecosystem functioning and stability in the face of disturbance. Some important species can strongly shape community structure and ecosystem functioning, but their impacts and interactions on ecosystem-level responses to disturbance are less well known. Shallow ponds provide a model system in which to study the effects of such species because some taxa mitigate transitions between alternative ecosystem states caused by eutrophication. We performed pond experiments to test how two foundation species (a macrophyte and a mussel) affected the biomass of planktonic primary producers and its stability in response to nutrient additions. Individually, each species reduced phytoplankton biomass and tended to increase rates of recovery from disturbance, but together the species reversed these effects, particularly with larger nutrient additions. This reversal was mediated by high cyanobacterial dominance of the community and a resulting loss of trait evenness. Effects of the foundation species on primary producer biomass were associated with effects on other ecosystem properties, including turbidity and dissolved oxygen. Our work highlights the important role of foundation species and their interactive effects in determining responses of ecosystem functioning to disturbance.


Oikos ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 451-457 ◽  
Author(s):  
Rolf D. Vinebrooke ◽  
Kathryn L. Cottingham ◽  
Jon Norberg, Marten Scheffer ◽  
Stanley I. Dodson ◽  
Stephen C. Maberly ◽  
...  

2016 ◽  
Vol 371 (1694) ◽  
pp. 20150283 ◽  
Author(s):  
Aleksandra M. Lewandowska ◽  
Antje Biermann ◽  
Elizabeth T. Borer ◽  
Miguel A. Cebrián-Piqueras ◽  
Steven A. J. Declerck ◽  
...  

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.


2013 ◽  
Vol 28 (4) ◽  
pp. 380-383 ◽  
Author(s):  
Manfred Türke ◽  
Tamara Blattmann ◽  
Eva Knop ◽  
Anne Kindermann ◽  
Julia Prestele ◽  
...  

AbstractAgri-environmental schemes involving organic farming or set-aside management aim at promoting biodiversity and restoring ecosystem functioning in agrarian landscapes. Application of pesticides in these crop fields is strongly regulated facilitating the spread of weeds but also allowing for the establishment of endangered herbs and a variety of animals. Recent studies found gastropods and earthworms to be legitimate dispersers of seeds of wild plants. We assumed that both groups also play a significant role in the spread and establishment of wild plants within crop fields. Therefore, we are conducting a series of experiments in three different study systems on (1) the role of earthworms and gastropods as dispersers of rare herbs and weeds in an organic rye field in Germany, (2) the seed feeding behavior of gastropods of plants sown in fallow ground in Switzerland, and (3) weed dispersal in irrigated rice fields by golden apple snails in the Philippines.


2020 ◽  
Vol 14 (12) ◽  
pp. 4653-4673
Author(s):  
Lianyu Yu ◽  
Simone Fatichi ◽  
Yijian Zeng ◽  
Zhongbo Su

Abstract. The vadose zone is a zone sensitive to environmental changes and exerts a crucial control in ecosystem functioning and even more so in cold regions considering the rapid change in seasonally frozen ground under climate warming. While the way in representing the underlying physical process of the vadose zone differs among models, the effect of such differences on ecosystem functioning and its ecohydrological response to freeze–thaw cycles are seldom reported. Here, the detailed vadose zone process model STEMMUS (Simultaneous Transfer of Energy, Mass and Momentum in Unsaturated Soil) was coupled with the ecohydrological model Tethys–Chloris (T&C) to investigate the role of influential physical processes during freeze–thaw cycles. The physical representation is increased from using T&C coupling without STEMMUS enabling the simultaneous mass and energy transfer in the soil system (liquid, vapor, ice) – and with explicit consideration of the impact of soil ice content on energy and water transfer properties – to using T&C coupling with it. We tested model performance with the aid of a comprehensive observation dataset collected at a typical meadow ecosystem on the Tibetan Plateau. Results indicated that (i) explicitly considering the frozen soil process significantly improved the soil moisture/temperature profile simulations and facilitated our understanding of the water transfer processes within the soil–plant–atmosphere continuum; (ii) the difference among various representations of vadose zone physics have an impact on the vegetation dynamics mainly at the beginning of the growing season; and (iii) models with different vadose zone physics can predict similar interannual vegetation dynamics, as well as energy, water, and carbon exchanges, at the land surface. This research highlights the important role of vadose zone physics for ecosystem functioning in cold regions and can support the development and application of future Earth system models.


2020 ◽  
Author(s):  
Lianyu Yu ◽  
Yijian Zeng ◽  
Simone Fatichi ◽  
Zhongbo Su

Abstract. The vadose zone is a sensitive region to environmental changes and exerts a crucial control in ecosystem functioning. While the way in representing the underlying process of vadose zone differs among models, the effect of such differences on ecosystem functioning is seldomly reported. Here, the detailed vadose zone process model STEMMUS was coupled with the ecohydrological model T&C to investigate the role of solving influential physical processes, considering different soil water and heat transfer parameterizations including frozen soils. We tested model performance with the aid of a comprehensive observation dataset collected at a typical meadow ecosystem on the Tibetan Plateau. Results indicated that: i) explicitly considering the frozen soil process significantly improved the soil moisture/temperature (SM/ST) profile simulations and facilitated our understanding of the water transfer processes within the soil-plant-atmosphere continuum; ii) the difference among various complexity of vadose zone physics have an impact on the vegetation dynamics mainly at the beginning of the growing season; iii) models with different vadose zone physics can predict similar interannual vegetation dynamics, and energy, water and carbon exchanges at the land-surface. This research highlights the role of vadose zone models and their underlying physics, in ecosystem functioning and can guide the development and applications of future earth system models.


2021 ◽  
Author(s):  
Vít Latzel ◽  
Javier Puy ◽  
Michael Thieme ◽  
Etienne Bucher ◽  
Lars Götzenberger ◽  
...  

AbstractAn accumulating body of evidence indicates that natural plant populations harbour a large diversity of transposable elements (TEs). TEs provide genetic and epigenetic variation that can substantially translate into changes in plant phenotypes. Despite the wealth of data on the ecological and evolutionary effects of TEs on plant individuals, we have virtually no information on the role of TEs on populations and ecosystem functioning. On the example of Arabidopsis thaliana, we demonstrate that TE-generated variation creates differentiation in ecologically important functional traits. In particular, we show that Arabidopsis populations with increasing diversity of individuals differing in copy numbers of the ONSEN retrotransposon had higher phenotypic and functional diversity. Moreover, increased diversity enhanced population productivity and reduced performance of interspecific competitors. We conclude that TE-generated diversity can have similar effects on ecosystem as usually documented for other biological diversity effects.


2021 ◽  
Vol 288 (1946) ◽  
pp. 20202779
Author(s):  
Patrick L. Thompson ◽  
Sonia Kéfi ◽  
Yuval R. Zelnik ◽  
Laura E. Dee ◽  
Shaopeng Wang ◽  
...  

The biodiversity and ecosystem functioning (BEF) relationship is expected to be scale-dependent. The autocorrelation of environmental heterogeneity is hypothesized to explain this scale dependence because it influences how quickly biodiversity accumulates over space or time. However, this link has yet to be demonstrated in a formal model. Here, we use a Lotka–Volterra competition model to simulate community dynamics when environmental conditions vary across either space or time. Species differ in their optimal environmental conditions, which results in turnover in community composition. We vary biodiversity by modelling communities with different sized regional species pools and ask how the amount of biomass per unit area depends on the number of species present, and the spatial or temporal scale at which it is measured. We find that more biodiversity is required to maintain functioning at larger temporal and spatial scales. The number of species required increases quickly when environmental autocorrelation is low, and slowly when autocorrelation is high. Both spatial and temporal environmental heterogeneity lead to scale dependence in BEF, but autocorrelation has larger impacts when environmental change is temporal. These findings show how the biodiversity required to maintain functioning is expected to increase over space and time.


2020 ◽  
Vol 162 ◽  
pp. 105096
Author(s):  
Sebastiaan Mestdagh ◽  
Xiaoyu Fang ◽  
Karline Soetaert ◽  
Tom Ysebaert ◽  
Tom Moens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document