Atmospheric motion: principles

2004 ◽  
pp. 152-166
Keyword(s):  
2021 ◽  
Vol 13 (9) ◽  
pp. 1702
Author(s):  
Kévin Barbieux ◽  
Olivier Hautecoeur ◽  
Maurizio De Bartolomei ◽  
Manuel Carranza ◽  
Régis Borde

Atmospheric Motion Vectors (AMVs) are an important input to many Numerical Weather Prediction (NWP) models. EUMETSAT derives AMVs from several of its orbiting satellites, including the geostationary satellites (Meteosat), and its Low-Earth Orbit (LEO) satellites. The algorithm extracting the AMVs uses pairs or triplets of images, and tracks the motion of clouds or water vapour features from one image to another. Currently, EUMETSAT LEO satellite AMVs are retrieved from georeferenced images from the Advanced Very-High-Resolution Radiometer (AVHRR) on board the Metop satellites. EUMETSAT is currently preparing the operational release of an AMV product from the Sea and Land Surface Temperature Radiometer (SLSTR) on board the Sentinel-3 satellites. The main innovation in the processing, compared with AVHRR AMVs, lies in the co-registration of pairs of images: the images are first projected on an equal-area grid, before applying the AMV extraction algorithm. This approach has multiple advantages. First, individual pixels represent areas of equal sizes, which is crucial to ensure that the tracking is consistent throughout the processed image, and from one image to another. Second, this allows features that would otherwise leave the frame of the reference image to be tracked, thereby allowing more AMVs to be derived. Third, the same framework could be used for every LEO satellite, allowing an overall consistency of EUMETSAT AMV products. In this work, we present the results of this method for SLSTR by comparing the AMVs to the forecast model. We validate our results against AMVs currently derived from AVHRR and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The release of the operational SLSTR AMV product is expected in 2022.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 215892-215903
Author(s):  
Ji Jin ◽  
Bin Wang ◽  
Min Yu ◽  
Jiang Liu ◽  
Wenbo Wang

2018 ◽  
Vol 35 (9) ◽  
pp. 1737-1752 ◽  
Author(s):  
Dae-Hui Kim ◽  
Hyun Mee Kim

AbstractIn this study, the effect of assimilating Himawari-8 (HIMA-8) atmospheric motion vectors (AMVs) on forecast errors in East Asia is evaluated using observation system experiments based on the Weather Research and Forecasting Model and three-dimensional variational data assimilation system. The experimental period is from 1 August to 30 September 2015, during which both HIMA-8 and Multifunctional Transport Satellite-2 (MTSAT-2) AMVs exist. The energy-norm forecast error based on the analysis of each experiment as reference was reduced more by replacing MTSAT-2 AMVs with HIMA-8 AMVs than by adding HIMA-8 AMVs to the MTSAT-2 AMVs. When the HIMA-8 AMVs replaced or were added to MTSAT-2 AMVs, the observation impact was reduced, which implies the analysis–forecast system was improved by assimilating HIMA-8 AMVs. The root-mean-square error (RMSE) of the 500-hPa geopotential height forecasts based on the analysis of each experiment decreases more effectively when the region lacking in upper-air wind observations is reduced by assimilating both MTSAT-2 and HIMA-8 AMVs. When the upper-air radiosonde (SOUND) observations are used as reference, assimilating more HIMA-8 AMVs decreases the forecast error. Based on various measures, the assimilation of HIMA-8 AMVs has a positive effect on the reduction of forecast errors. The effects on the energy-norm forecast error and the RMSE based on SOUND observations are greater when HIMA-8 AMVs replaced MTSAT-2 AMVs. However, the effects on the RMSE of the 500-hPa geopotential height forecasts are greater when both HIMA-8 and MTSAT-2 AMVs were assimilated, which implies potential benefits of assimilating AMVs from several satellites for forecasts over East Asia depending on the choice of measurement.


2006 ◽  
Vol 21 (4) ◽  
pp. 663-669 ◽  
Author(s):  
Dongliang Wang ◽  
Xudong Liang ◽  
Yihong Duan ◽  
Johnny C. L. Chan

Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research nonhydrostatic Mesoscale Model is employed to evaluate the impact of the Geostationary Meteorological Satellite-5 water vapor and infrared atmospheric motion vectors (AMVs), incorporated with the four-dimensional variational (4DVAR) data assimilation technique, on tropical cyclone (TC) track predictions. Twenty-two cases from eight different TCs over the western North Pacific in 2002 have been examined. The 4DVAR assimilation of these satellite-derived wind observations leads to appreciable improvements in the track forecasts, with average reductions in track error of ∼5% at 12 h, 12% at 24 h, 10% at 36 h, and 7% at 48 h. Preliminary results suggest that the improvement depends on the quantity of the AMV data available for assimilation.


Author(s):  
Thomas Corpetti ◽  
Patrick Héas ◽  
Etienne Mémin ◽  
Nicolas Papadakis

2014 ◽  
Vol 120 (3-4) ◽  
pp. 587-599 ◽  
Author(s):  
Inderpreet Kaur ◽  
Prashant Kumar ◽  
S. K. Deb ◽  
C. M. Kishtawal ◽  
P. K. Pal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document