Acoustic emissions from flat-jack test for rock-burst prediction

Author(s):  
A. Voza ◽  
L. Valguarnera ◽  
S. Fuoco ◽  
G. Ascari ◽  
D. Boldini ◽  
...  
2014 ◽  
Vol 628 ◽  
pp. 383-389 ◽  
Author(s):  
Ya Hui Peng ◽  
Kang Peng ◽  
Jian Zhou ◽  
Zhi Xiang Liu

Due to the complex features of rock burst hazard assessment systems, a support vector machine (SVM) model for predicting of classification of rock burst was established based on the SVM theory and the actual characteristics of the project in this study. The main factors of rock burst, such as coal seam, dip, buried depth, structure situation, change of pitch angle, change of coal thickness, gas concentration, roof management, pressure relief and shooting were defined as the criterion indices for rock burst prediction in the proposed model. In order to determine reasonable and efficient the parameters of SVM, Firstly, the appropriate fitness function for genetic algorithms (GA) operation was determined, and then optimization parameters of SVM model were selected by real coded GA, therefore, the genetic algorithms and support vector machine (GSVM) model was established. A GSVM model was obtained through training 23 sets of measured data, the cross-validation method was introduced to verify the stability of GSVM model and the ratio of mis-discrimination is 0. Moreover, the proposed model was used to predict 12 new samples rock burst, the correct rate of prediction results is 91.6667% and are identical with actual situation. The results show that the genetic algorithm can speed up SVM parameter optimization search, the proposed model has a high credibility in the study of rock burst prediction of risk classification, which can be applied to practical engineering.


2018 ◽  
Vol 22 ◽  
pp. 5-9
Author(s):  
Krishna Kanta Panthi

Tunnels and underground caverns located at greater depth (high rock cover or overburden) are subjected to high in-situ stress environment. Those rock mass that are relatively unjointed and massive are exposed to the brittle failure, which is famously known as rock spalling/ rock bursting phenomenon. Establishing state of the stress and evaluating stress-induced instability in tunnels passing through such rock mass at relatively greater depth is therefore a challenge. The aim of this manuscript is to describes existing brittle failure (rock burst) prediction methods that are being practiced worldwide and propose necessary editions so that quality of assessment is enhanced. The methods described are very practical and the author is confident that professional engineers will use them to evaluate and predict potential rock burst/ rock spalling scenario in the tunnels during planning, design and construction phases. Each method of prediction is explained, applicability extent is highlighted and comparisons between the methods are made.  HYDRO Nepal JournalJournal of Water Energy and EnvironmentIssue No: 22Page: 5-9Uploaded date: January 14, 2018


2012 ◽  
Vol 256-259 ◽  
pp. 1161-1166
Author(s):  
Li Guo ◽  
Cheng Jing Zhou ◽  
Zhang Ru

Based on the research of rock burst in underground engineering at home and abroad, definition,type, intensity grading,influencing factors,the failure mechanism,the empirical criterion and on-site forecasting and control methods of rock burst are summarized systematically. The current main problems in rock burst research are pointed out and the idea of rock burst comprehensive prediction are put forward. We recommend that the rock burst prediction should be divided into three steps, i.e. tendentiousness prediction,trend prediction and field prediction and forecasting.


Sign in / Sign up

Export Citation Format

Share Document