Tin Oxide (SnO2)

2020 ◽  
pp. 463-557
Author(s):  
Zbigniew Galazka
Keyword(s):  
2019 ◽  
Vol 14 (8) ◽  
pp. 828-830 ◽  
Author(s):  
Weihua Meng ◽  
Weihong Wu ◽  
Weiwei Zhang ◽  
Luyao Cheng ◽  
Yunhong Jiao ◽  
...  

2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2020 ◽  
Author(s):  
Thomas Herzog ◽  
Naomi Weitzel ◽  
Sebastian Polarz

<div><div><div><p>One of the fascinating properties of metal-semiconductor Schottky-barriers, which has been observed for some material combinations, is memristive behavior. Memristors are smart, since they can reversibly switch between a low resistance state and a high resistance state. The devices offer a great potential for advanced computing and data storage, including neuromorphic networks and resistive random-access memory. However, as for many other cases, the presence of a real interface (metal - metal oxide) has numerous disadvantages. The realization of interface-free, respectively Schottky-barrier free memristors is highly desirable. The aim of the current paper is the generation of nanowire arrays with each nanorod possessing the same crystal phase (Rutile) and segments only differing in composition. The electric conductivity is realized by segments made of highly-doped antimony tin oxide (ATO) transitioning into pure tin oxide (TO). Complex nanoarchitectures are presented, which include ATO-TO, ATO-TO-ATO nanowires either with a stepwise distribution of antimony or as a graded functional material. The electrical characterization of the materials reveals that the introduction of memristive properties in such structures is possible. The special features observed in voltage-current (IV) curves are correlated to the behavior of mobile oxygen vacancies (VO..) at different values of applied electrical potential.</p></div></div></div>


2020 ◽  
Vol 13 (4) ◽  
pp. 722-727
Author(s):  
ZHU Ye-xin ◽  
◽  
◽  
LI Ya-nan ◽  
SHI Wei-jie ◽  
...  

1986 ◽  
Vol 22 (23) ◽  
pp. 1266 ◽  
Author(s):  
D.G. Parker ◽  
P.G. Say

2006 ◽  
Vol 155 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Toshiaki Matsui ◽  
Katsuhiko Fujiwara ◽  
Takeoh Okanishi ◽  
Ryuji Kikuchi ◽  
Tatsuya Takeguchi ◽  
...  

The Analyst ◽  
1995 ◽  
Vol 120 (10) ◽  
pp. 2579-2583 ◽  
Author(s):  
Xiaohua Cai ◽  
Božidar Ogorevc ◽  
Gabrijela Tavčar ◽  
Joseph Wang

Sign in / Sign up

Export Citation Format

Share Document