Evaluation of Shear Design Provisions for Reinforced Concrete Beams and Prestressed Concrete Beams

2005 ◽  
Vol 17 (5) ◽  
pp. 717-726 ◽  
Author(s):  
Kang-Su Kim ◽  
Sang-Sik Kim
Author(s):  
Nazar Oukaili ◽  
Mohammed Khattab

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. Specimens in each group were categorized as follows: two traditional reinforced concrete specimens with different intensity of tension reinforcement; three partially prestressed specimens with bonded strands; three partially prestressed specimens with unbonded strands; and two fully prestressed concrete specimens. The main variable, which was considered for all specimens was the partial prestressing ratio (PPR). It was observed that, the ductility of reinforced concrete beams was insignificantly increased during subjecting to limited repeated loading. For fully prestressed and partially prestressed concrete beams with high level of PPR, the ductility was significantly enhanced, while, it was decreased for specimens with small level of PPR.


2013 ◽  
Vol 40 (11) ◽  
pp. 1068-1081 ◽  
Author(s):  
Mitra Noghreh Khaja ◽  
Edward G. Sherwood

Beam tests are conducted to investigate the effect of the reinforcement ratio, ρ, and the shear span to depth ratio, a/d, on the shear strength of reinforced concrete beams and slabs without stirrups. The a/d ratio is shown to have a very significant effect on shear strength at both low values of a/d (where failure is governed by strut-and-tie mechanisms) and large values of a/d (where failure is governed by breakdown in beam action). Increases in ρ associated with increases in a/d such that the strain, or M/ρVd ratio, is kept constant will result in constant failure shear stresses. Shear design methods that do not account for a/d (e.g., ACI Committee 440) cannot predict the observed experimental behaviour, whereas the general method of the CSA A23.3 code can. Using the ACI 440 equation for Vc may reduce the economic competitiveness of fibre-reinforced polymer reinforcement versus steel reinforcement.


2021 ◽  
Vol 6 (12) ◽  
pp. 171
Author(s):  
Marco Andrea Pisani ◽  
Maria Pina Limongelli ◽  
Pier Francesco Giordano ◽  
Mattia Palermo

In this paper, the effectiveness of vibration-based tests for the detection of damages for prestressed concrete beams is investigated. Despite large research efforts, discrepant and sometimes contradicting conclusions have been drawn regarding the efficacy and reliability of vibration-based monitoring for prestressed structures. Herein, a contribution to this discussion is provided by tackling the problem from a different perspective. Specifically, the question that this paper intends to answer is: “Do vibration-based tests support decision-makers in integrity management operations for prestressed elements?” The discussion is carried out by comparing the performance of prestressed and ordinary reinforced concrete beams with similar capacities. Both analytical and numerical case studies are considered. Results show that, for prestressed beams, in contrast to reinforced concrete beams, modal parameters can provide information regarding damage only when the structure is close to its ultimate conditions. This makes this information hardly useful for integrity management purposes and the effectiveness of vibration-based tests questionable for this type of structural element.


Author(s):  
Amr H. Badawy ◽  
Ahmed Hassan ◽  
Hala El-Kady ◽  
L.M. Abd-El Hafez

The behavior of unbounded post tension and reinforced concrete beams under elevated temperature was presented. The experimental work was consisted of two major phases. In the first phase, the objective was studying the mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams respectively were studied. In the second phase, the residual mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams under elevated 400oC, for 120 minutes durations. The failure mechanisms, ultimate load capacity, and deflection at critical sections were monitored. The numerical prediction of the flexural behavior of the tested specimens is presented in this paper. This includes a comparison between the numerical and experimental test results according to ANSYS models. The results indicate that the prestressed beam with steel addition and reinforced concrete beams had higher resistance to beams under elevated 400oC than that of prestressed concrete beam in terms of ultimate capacity. It is also shown that the reinforced concrete beams have higher resistance to beams under elevated temperature than that of prestressed beam, prestressed beam with steel addition.


Sign in / Sign up

Export Citation Format

Share Document