scholarly journals Characterization of Monilinia fructicola Associated with Brown Rot of Cherry Fruit in Korea

2014 ◽  
Vol 42 (4) ◽  
pp. 353-356 ◽  
Author(s):  
Hyo-Won Choi ◽  
Sung Kee Hong ◽  
Young Kee Lee ◽  
Young Ju Nam ◽  
Jae Guem Lee ◽  
...  
2012 ◽  
Vol 39 (No. 3) ◽  
pp. 116-122 ◽  
Author(s):  
Sz. Sződi ◽  
H. Komjáti ◽  
Gy. Turóczi

Monilinia laxa (Monilia laxa), Monilinia fructicola (Monilia fructicola) and Monilinia fructigena (Monilia fructigena) are the causal agents of brown rot on pome and stone fruits in Hungary. Forty-five isolates collected from different hosts, different years in several orchards were used for characterization of the M. laxa and M. fructigena population in Hungary. The isolates were identified on species level based on morphological and molecular biological methods; out of these 24 were M. laxa, 20 were M. fructigena and 1 was M. fructicola. Populations of the three Monilinia species were studied with microsatellite primers and the degree of genetic diversity within the species was measured. The population structure analysis revealed that genetic diversity within M. laxa subpopulations was H<sub>S</sub>= 0.1599, while within M. fructigena subpopulations was H<sub>S</sub>= 0.2551. The total genetic diversity was H<sub>T</sub>= 0.3846, while genetic diversity between M. laxa and M. fructigena subpopulations was D<sub>ST</sub>= 0.1771. No clustering relationship was observed among isolates by the different years or hosts.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1555-1560 ◽  
Author(s):  
S. N. Chen ◽  
Y. Shang ◽  
Y. Wang ◽  
G. Schnabel ◽  
Y. Lin ◽  
...  

Brown rot of peach caused by Monilinia fructicola can cause considerable preharvest and postharvest losses in China. Fungicides are increasingly utilized to minimize such losses. Eighty isolates of M. fructicola were collected from commercial peach orchards located in five provinces in China and the sensitivity to carbendazim, azoxystrobin, tebuconazole, and boscalid was determined. Resistance to carbendazim was detected only in the Yunnan province in 15 of 16 isolates. Characterization of carbendazim-resistant isolates revealed stable resistance, no fitness penalty, and negative cross resistance to diethofencarb. Resistant isolates produced disease symptoms on detached fruit sprayed with label rates of formulated carbendazim and possessed the amino acid mutation E198A in β-tubulin. Resistance to azoxystrobin was detected in 3 of 10 isolates from Fujian. In contrast to carbendazim resistance, however, azoxystrobin resistance was unstable, associated with a fitness penalty, and not associated with mutations in the target gene cytochrome b. The concentration at which mycelial growth is inhibited 50% (EC50) values of the azoxystrobin-sensitive isolates were 0.02 to 1.94 μg/ml, with a mean value of 0.54 μg/ml. All isolates were sensitive to tebuconazole, with a mean EC50 value of 0.03 μg/ml. The EC50 values for boscalid were 0.01 to 3.85 μg/ml, with a mean value of 1.02 μg/ml. Our results indicate that methyl benzimidazole carbamates (MBCs), quionon outside inhibitors, demethylation inhibitor fungicides, and succinate dehydrogenase inhibitors are likely to be very effective in controlling brown rot in many peach production areas in China, but that resistance to MBCs is emerging.


2010 ◽  
Vol 23 (2) ◽  
pp. 176-186 ◽  
Author(s):  
Miin-Huey Lee ◽  
Chiu-Min Chiu ◽  
Tatiana Roubtsova ◽  
Chien-Ming Chou ◽  
Richard M. Bostock

A 4.5-kb genomic DNA containing a Monilinia fructicola cutinase gene, MfCUT1, and its flanking regions were isolated and characterized. Sequence analysis revealed that the genomic MfCUT1 carries a 63-bp intron and a promoter region with several transcription factor binding sites that may confer redox regulation of MfCUT1 expression. Redox regulation is indicated by the effect of antioxidants, shown previously to inhibit MfCUT1 gene expression in cutin-induced cultures, and in the present study, where H2O2 enhanced MfCUT1 gene expression. A β-glucuronidase (GUS) reporter gene (gusA) was fused to MfCUT1 under the control of the MfCUT1 promoter, and this construct was then used to generate an MfCUT1-GUS strain by Agrobacterium spp.-mediated transformation. The appearance of GUS activity in response to cutin and suppression of GUS activity by glucose in cutinase-inducing medium verified that the MfCUT1-GUS fusion protein was expressed correctly under the control of the MfCUT1 promoter. MfCUT1-GUS expression was detected following inoculation of peach and apple fruit, peach flower petals, and onion epidermis, and during brown rot symptom development on nectarine fruit at a relatively late stage of infection (24 h postinoculation). However, semiquantitative reverse-transcriptase polymerase chain reaction provided sensitive detection of MfCUT1 expression within 5 h of inoculation in both almond and peach petals. MfCUT1-GUS transformants expressed MfCUT1 transcripts at twice the level as the wild type and caused more severe symptoms on Prunus flower petals, consistent with MfCUT1 contributing to the virulence of M. fructicola.


Author(s):  
Daniel Kouamé Kra ◽  
Yapi Richmond Baka ◽  
David Coulibaly N’golo ◽  
Ipou Joseph Ipou

The cocoa tree, the mainexport crop in Côte d'Ivoire is frequently attacked by a disease: brown pod rot, caused by Phytophthora spp. which causes a considerable drop in production. This soil-borne pathogen attacks on so-called weeds when environmental conditions are favourable. The presence of these susceptible weed hosts can amplify this scourge of brown rot by transmitting the pathogen to the crop plant. In order to improve the yield of this crop, a study was conducted in the Nawa region to identify the weed hosts through the characterization of the pathogen. This study consisted first in the inventory of susceptible host weeds of Phytophthora spp. and second in the morphological characterization of the pathogen. Concerning the host weeds inventory we procceeded determining all symptomatic weeds located within 3 m of the cocoa plants affected by brown rot. We identified 48 susceptible host species, divided into 41 genera and 22 families and we observed brown spots on the leaves of Oplismenus burmannii and Laportea aestuans; on the leaves of Clerodendrum splendens and Xanthosoma mafaffa, brown necroses surrounded by a yellow halo were noticed. Oily brown spots were examined on the leaves of Ageratum conyzoides. On the proximal, lateral and distal parts of the pods symptoms of brown spots covered with whitish mycelia were observed. Phytophthora strains obtained from the pods and weeds on PDA culture medium were characterized by matted, white mycelial colonies with a cottony appearance. Microscopic features revealed the presence of sporocysts, oospores and chlamydospores of different shapes.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1166-1166 ◽  
Author(s):  
A. Munda ◽  
M. Viršček Marn

Monilinia fructicola, the causal agent of brown rot, is a destructive fungal pathogen that affects mainly stone fruits (Prunoideae). It causes fruit rot, blossom wilt, twig blight, and canker formation and is common in North and South America, Australia, and New Zealand. M. fructicola is listed as a quarantine pathogen in the European Union and was absent from this region until 2001 when it was detected in France. In August 2009, mature peaches (Prunus persica cv. Royal Glory) with brown rot were found in a 5-year-old orchard in Goriška, western Slovenia. Symptoms included fruit lesions and mummified fruits. Lesions were brown, round, rapidly extending, and covered with abundant gray-to-buff conidial tufts. The pathogen was isolated in pure culture and identified based on morphological and molecular characters. Colonies on potato dextrose agar (PDA) incubated at 25°C in darkness had an average daily growth rate of 7.7 mm. They were initially colorless and later they were light gray with black stromatal plates and dense, hazel sporogenous mycelium. Colony margins were even. Sporulation was abundant and usually developed in distinct concentric zones. Limoniform conidia, produced in branched chains, measured 10.1 to 17.7 μm (mean = 12.1 μm) × 6.2 to 8.6 μm (mean = 7.3 μm) on PDA. Germinating conidia produced single germ tubes whose mean length ranged from 251 to 415 μm. Microconidia were abundant, globose, and 3 μm in diameter. Morphological characters resembled those described for M. fructicola (1). Morphological identification was confirmed by amplifying genomic DNA of isolates with M. fructicola species-specific primers (2–4). Sequence of the internal transcribed spacer (ITS) region (spanning ITS1 and ITS 2 plus 5.8 rDNA) of a representative isolate was generated using primers ITS1 and ITS4 and deposited in GenBank (Accession No. GU967379). BLAST analysis of the 516-bp PCR product revealed 100% identity with several sequences deposited for M. fructicola in NCBI GenBank. Pathogenicity was tested by inoculating five mature surface-sterilized peaches with 10 μl of a conidial suspension (104 conidia ml–1) obtained from one representative isolate. Sterile distilled water was used as a control. Peaches were wounded prior to inoculation. After 5 days of incubation at room temperature and 100% relative humidity, typical brown rot symptoms developed around the inoculation point, while controls showed no symptoms. M. fructicola was reisolated from lesion margins. Peach and nectarine orchards in a 5-km radius from the outbreak site were surveyed in September 2009 and M. fructicola was confirmed on mummified fruits from seven orchards. The pathogen was not detected in orchards from other regions of the country, where only the two endemic species M. laxa and M. fructigena were present. To our knowledge, this is the first report of M. fructicola associated with brown rot of stone fruits in Slovenia. References: (1) L. R. Batra. Page 106 in: World Species of Monilinia (Fungi): Their Ecology, Biosystematics and Control. J. Cramer, Berlin, 1991. (2) M.-J. Côté et al. Plant Dis. 88:1219, 2004. (3) K. J. D. Hughes et al. EPPO Bull. 30:507, 2000. (4) R. Ioos and P. Frey. Eur. J. Plant Pathol. 106:373, 2000.


2003 ◽  
Vol 69 (12) ◽  
pp. 7145-7152 ◽  
Author(s):  
Zhonghua Ma ◽  
Michael A. Yoshimura ◽  
Themis J. Michailides

ABSTRACT Low and high levels of resistance to the benzimidazole fungicides benomyl and thiophanate-methyl were observed in field isolates of Monilinia fructicola, which is the causative agent of brown rot of stone fruit. Isolates that had low levels of resistance (hereafter referred to as LR isolates) and high levels of resistance (hereafter referred to as HR isolates) were also cold and heat sensitive, respectively. Results from microsatellite DNA fingerprints showed that genetic identities among the populations of sensitive (S), LR, and HR isolates were very high (>0.96). Analysis of DNA sequences of theβ -tubulin gene showed that the LR isolates had a point mutation at codon 6, causing a replacement of the amino acid histidine by tyrosine. Codon 198, which encodes a glutamic acid in S and LR isolates, was converted to a codon for alanine in HR isolates. Based on these point mutations in the β-tubulin gene, allele-specific PCR assays were developed for rapid detection of benzimidazole-resistant isolates of M. fructicola from stone fruit.


Sign in / Sign up

Export Citation Format

Share Document