scholarly journals A study on novel coupled membrane bioreactor with electro oxidation for biofouling reduction

2020 ◽  
Vol 26 (4) ◽  
pp. 200039-0
Author(s):  
Kamalakannan Vasanthapalaniappan ◽  
Kavitha Palani ◽  
Shanmuga Sundar Saravanabhavan ◽  
Narendranath Jonna ◽  
Maharaja Pounsamy ◽  
...  

The present study focuses on a novel method to integrate the electro-oxidation process with membrane bioreactor to reduce biofouling and increase the biodegradability index. Here, we used electro-oxidation as pretreatment with membrane bioreactor operating at a current density of 1.5 mA/cm2 with hydraulic retention time at six h. The mixed liquor suspended solids concentration was maintained constant at 3,200 mg/L throughout the experiment for 30 days. The results obtained were promising with the percentage removal of COD, TOC, total nitrogen, and chlorides were in the range of 97%, 90%, 94%, and 15%, respectively, which was comparatively higher than the existing membrane bioreactor. The biodegradable index of treated water was higher, reaching a maximum of 0.6, which is remarkably high compared with 0.3 in a membrane bioreactor. The integrated electro-oxidation process was efficient for the complete removal of pollutants from wastewater, which was confirmed using gas chromatography. In addition, the phytotoxicity test showed a significantly higher quality of treated water compared with that of raw tannery effluent. Hence, our proposed integrated electro-oxidation process can be used to decrease biofouling with increased biodegradability index as a replacement for MBR.

2018 ◽  
Vol 6 (6) ◽  
pp. 7070-7079 ◽  
Author(s):  
Fernando H. Borba ◽  
Leandro Pellenz ◽  
Francine Bueno ◽  
Jonas Jean Inticher ◽  
Luana Braun ◽  
...  

2021 ◽  
Vol 874 ◽  
pp. 155-164
Author(s):  
Herlina ◽  
Muhammad Ali Zulfikar ◽  
Buchari

Recently, the increased use of antibiotics in the environment has been studied and one of them is amoxicillin. Amoxicillin (AMX) is a pharmaceutical product that can become waste due to the continuous use and released into the ecosystem even at low concentrations. The electro-oxidation process is one of the electrochemical methods used to destruct the existence of antibiotics because the process is relatively fast and inexpensive. Platinum electrode and platinum modified cobalt electrodes are used for amoxicillin electro-oxidation at the pH of 2 - 7. The range of this amoxicillin's pH was achieved by the pKa's values of the amoxicillin and measured using a UV/Vis spectrophotometer. Electron transfer during the amoxicillin electro-oxidation process with these electrodes is measured by linear sweep voltammetry. The results obtained during the electro-oxidation process showed that electron transfer of amoxicillin was 1, with a Nernstian factor of 0.0521 V/pH for platinum electrode and platinum modified cobalt electrodes, Pt/Co(OH)2 and Pt/Co respectively with values of 0.0506 V/pH and 0.0673 V/pH.


2001 ◽  
Vol 43 (8) ◽  
pp. 195-201 ◽  
Author(s):  
K. Park ◽  
J.-M. Cho ◽  
J. Oh ◽  
K. Chung

This study was conducted to show the influence of upward velocity in the inner column and downward velocity in the outer column of the coaxial cylinder-type flotation column on the solids removal efficiency, solids concentration in the treated water, and so on. The SIMPLE (Semi-Implicit Method for Pressure Linked Equation) solution was applied to the coaxial flotation column to simulate the velocity vectors of the elements of water flowing in the column. The effects of solids loading and residence time in the agglomerate separation zone on the solids removal efficiency were also tested. In the pilot scale coaxial DAF column experiments with solids concentration of 1,000–2,000 mg of SS per liter and solids loading less than 350 kg/m2/day, approximately 90% of the solids removal efficiencies were obtained using the upward velocity of up to 110 cm/min in the contact zone of the inner column and the downward velocity of up to 30 cm/min in the outer column. In the simulation, similar results were observed as in the experiments. The solids loading in the excess of 350 kg/m2/day caused the instability of the sludge float layer and aggravated the quality of the treated water.


Sign in / Sign up

Export Citation Format

Share Document