scholarly journals Challenges and Trends in Clinical Data Analytics

:Today’s technological advancements facilitated the researcher in collecting and organizing various forms of healthcare data. Data is an integral part of health care analytics. Drug discovery for clinical data analytics forms an important breakthrough work in terms of computational approaches in health care systems. On the other hand, healthcare analysis provides better value for money. The health care data management is very challenging as 80% of the data is unstructured as it includes handwritten documents, images; computer-generated clinical reports such as MRI, ECG, city scan, etc. The paper aims at providing a summary of work carried out by scientists and researchers who worked in health care domains. More precisely the work focuses on clinical data analysis for the period 2013 to 2019. The organization of the work carried out is specifically with concerned to data sets, Techniques, and Methods used, Tools adopted, Key Findings in clinical data analysis. The overall objective is to identify the current challenges, trends, and gaps in clinical data analysis. The pathway of the work is focused on carrying out on the bibliometric survey and summarization of the key findings in a novel way.

2020 ◽  
pp. 1839-1857
Author(s):  
Mamata Rath

Currently, there is an expanding interest for additional medical data from patients about their healthcare choices and related decisions, and they further need investment in their basic health issues. Big data provides patients presumptuous data to help them settle on the best choice and align with their medicinal treatment plan. One of the very advanced concepts related to the synthesis of big data sets to reveal the hidden pattern in them is big data analytics. It involves demanding techniques to mine and extract relevant data that includes the actions of piercing a database, effectively mine the data, query and inspect the data and is committed to enhance the technical execution of various task segments. The capacity to synthesize a lot of data can enable an association to manage data that can influence the business. In this way, the primary goal of big data analytics is to help business relationships to have enhanced comprehension of data, and subsequently, settle on proficient and very much educated decisions. Big data analytics empowers data diggers and researchers to examine an extensive volume of data that may not be outfit utilizing customary apparatuses. Big data analytics require advances and statistical instruments that can change a lot of organized, unstructured, and semi-organized data into more reasonable data and metadata designed for explanatory procedures. There is tremendous positive potential concerning the application of big data in human health care services and many related major applications are still in their developmental stages. The deployment of big data in health service demonstrates enhancing health care results and controlling the expenses of common people due to treatment, as proven by some developing use cases. Keeping in view such powerful processing capacity of big data analytics in various technical fields of modern civilization related to health care, the current research article presents a comprehensive study and investigation on big data analytics and its application in multiple sectors of society with significance in health care applications.


Author(s):  
Abhishek Bajpai ◽  
Dr. Sanjiv Sharma

As the Volume of the data produced is increasing day by day in our society, the exploration of big data in healthcare is increasing at an unprecedented rate. Now days, Big data is very popular buzzword concept in the various areas. This paper provide an effort is made to established that even the healthcare industries are stepping into big data pool to take all advantages from its various advanced tools and technologies. This paper provides the review of various research disciplines made in health care realm using big data approaches and methodologies. Big data methodologies can be used for the healthcare data analytics (which consist 4 V’s) which provide the better decision to accelerate the business profit and customer affection, acquire a better understanding of market behaviours and trends and to provide E-Health services using Digital imaging and communication in Medicine (DICOM).Big data Techniques like Map Reduce, Machine learning can be applied to develop system for early diagnosis of disease, i.e. analysis of the chronic disease like- heart disease, diabetes and stroke. The analysis on the data is performed using big data analytics framework Hadoop. Hadoop framework is used to process large data sets Further the paper present the various Big data tools , challenges and opportunities and various hurdles followed by the conclusion.                                      


2020 ◽  
Author(s):  
Patrick Schwab ◽  
August DuMont Schütte ◽  
Benedikt Dietz ◽  
Stefan Bauer

BACKGROUND COVID-19 is a rapidly emerging respiratory disease caused by SARS-CoV-2. Due to the rapid human-to-human transmission of SARS-CoV-2, many health care systems are at risk of exceeding their health care capacities, in particular in terms of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds, and mechanical ventilators. Predictive algorithms could potentially ease the strain on health care systems by identifying those who are most likely to receive a positive SARS-CoV-2 test, be hospitalized, or admitted to the ICU. OBJECTIVE The aim of this study is to develop, study, and evaluate clinical predictive models that estimate, using machine learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test or require hospitalization or intensive care. METHODS Using a systematic approach to model development and optimization, we trained and compared various types of machine learning models, including logistic regression, neural networks, support vector machines, random forests, and gradient boosting. To evaluate the developed models, we performed a retrospective evaluation on demographic, clinical, and blood analysis data from a cohort of 5644 patients. In addition, we determined which clinical features were predictive to what degree for each of the aforementioned clinical tasks using causal explanations. RESULTS Our experimental results indicate that our predictive models identified patients that test positive for SARS-CoV-2 a priori at a sensitivity of 75% (95% CI 67%-81%) and a specificity of 49% (95% CI 46%-51%), patients who are SARS-CoV-2 positive that require hospitalization with 0.92 area under the receiver operator characteristic curve (AUC; 95% CI 0.81-0.98), and patients who are SARS-CoV-2 positive that require critical care with 0.98 AUC (95% CI 0.95-1.00). CONCLUSIONS Our results indicate that predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19 and, therefore, help inform care and prioritize resources.


10.2196/21439 ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. e21439 ◽  
Author(s):  
Patrick Schwab ◽  
August DuMont Schütte ◽  
Benedikt Dietz ◽  
Stefan Bauer

Background COVID-19 is a rapidly emerging respiratory disease caused by SARS-CoV-2. Due to the rapid human-to-human transmission of SARS-CoV-2, many health care systems are at risk of exceeding their health care capacities, in particular in terms of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds, and mechanical ventilators. Predictive algorithms could potentially ease the strain on health care systems by identifying those who are most likely to receive a positive SARS-CoV-2 test, be hospitalized, or admitted to the ICU. Objective The aim of this study is to develop, study, and evaluate clinical predictive models that estimate, using machine learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test or require hospitalization or intensive care. Methods Using a systematic approach to model development and optimization, we trained and compared various types of machine learning models, including logistic regression, neural networks, support vector machines, random forests, and gradient boosting. To evaluate the developed models, we performed a retrospective evaluation on demographic, clinical, and blood analysis data from a cohort of 5644 patients. In addition, we determined which clinical features were predictive to what degree for each of the aforementioned clinical tasks using causal explanations. Results Our experimental results indicate that our predictive models identified patients that test positive for SARS-CoV-2 a priori at a sensitivity of 75% (95% CI 67%-81%) and a specificity of 49% (95% CI 46%-51%), patients who are SARS-CoV-2 positive that require hospitalization with 0.92 area under the receiver operator characteristic curve (AUC; 95% CI 0.81-0.98), and patients who are SARS-CoV-2 positive that require critical care with 0.98 AUC (95% CI 0.95-1.00). Conclusions Our results indicate that predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19 and, therefore, help inform care and prioritize resources.


Vaccine ◽  
2013 ◽  
Vol 31 (7) ◽  
pp. 1080-1085 ◽  
Author(s):  
Rulin C. Hechter ◽  
Lei Qian ◽  
Lina S. Sy ◽  
Sharon K. Greene ◽  
Eric S. Weintraub ◽  
...  

2018 ◽  
Author(s):  
Gang Luo ◽  
Peter Tarczy-Hornoch ◽  
Adam B Wilcox ◽  
E Sally Lee

BACKGROUND In the United States, health care is fragmented in numerous distinct health care systems including private, public, and federal organizations like private physician groups and academic medical centers. Many patients have their complete medical data scattered across these several health care systems, with no particular system having complete data on any of them. Several major data analysis tasks such as predictive modeling using historical data are considered impractical on incomplete data. OBJECTIVE Our objective was to find a way to enable these analysis tasks for a health care system with incomplete data on many of its patients. METHODS This study presents, to the best of our knowledge, the first method to use a geographic constraint to identify a reasonably large subset of patients who tend to receive most of their care from a given health care system. A data analysis task needing relatively complete data can be conducted on this subset of patients. We demonstrated our method using data from the University of Washington Medicine (UWM) and PreManage data covering the use of all hospitals in Washington State. We compared 10 candidate constraints to optimize the solution. RESULTS For UWM, the best constraint is that the patient has a UWM primary care physician and lives within 5 miles of at least one UWM hospital. About 16.01% (55,707/348,054) of UWM patients satisfied this constraint. Around 69.38% (10,501/15,135) of their inpatient stays and emergency department visits occurred within UWM in the following 6 months, more than double the corresponding percentage for all UWM patients. CONCLUSIONS Our method can identify a reasonably large subset of patients who tend to receive most of their care from UWM. This enables several major analysis tasks on incomplete medical data that were previously deemed infeasible.


2004 ◽  
Vol 171 (4S) ◽  
pp. 42-43 ◽  
Author(s):  
Yair Latan ◽  
David M. Wilhelm ◽  
David A. Duchene ◽  
Margaret S. Pearle

Sign in / Sign up

Export Citation Format

Share Document