scholarly journals A Murnaghan-Nakayama Rule for Generalized Demazure Atoms

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jamine LoBue ◽  
Jeffrey B. Remmel

International audience We prove an analogue of the Murnaghan-Nakayama rule to express the product of a power symmetric function and a generalized Demazure atom in terms of generalized Demazure atoms.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une certaine somme pondérée sur ces matrices. Notre interprétation utilise <i>série de Hilbert virtuel</i>, une nouvelle classe de spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (modifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit $\langle \Delta_f e_n, p_{1^{n}}\rangle$, où $\Delta_f$ est un opérateur de fonction symétrique de la théorie harmonique de diagonale. Nous utilisons notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules simples pour $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ et $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ impliquant $q; t$-coefficients binomial et ensemble ordonné partitions, respectivement.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Radmila Sazdanović ◽  
Martha Yip

International audience The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$<sub>*</sub>($G$) of graded $S_n$-modules, whose graded Frobenius series $Frob_G(q,t)$ reduces to the chromatic symmetric function at $q=t=1$. We also obtain analogues of several familiar properties of the chromatic symmetric polynomials in terms of homology. Le polynôme chromatique symétrique d’un graphe $G$ est une généralisation par une fonction symétrique du polynôme chromatique, et possède des propriétés combinatoires intéressantes. Nous appliquons les techniques de l’homologie de Khovanov pour construire une homologie $H$<sub>*</sub>($G$) de modules gradués $S_n$, dont la série bigraduée de Frobeniusse $Frob_G(q,t)$ réduit au polynôme chromatique symétrique à $q=t=1$. Nous obtenons également des analogies pour plusieurs propriétés connues des polynômes chromatiques en termes d’homologie.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Charles Robert Miers ◽  
Franck Ruskey

International audience Let $\alpha$ be a string over $\mathbb{Z}_q$, where $q = 2^d$. The $j$-th elementary symmetric function evaluated at $\alpha$ is denoted $e_j(\alpha)$ . We study the cardinalities $S_q(m;\mathcal{T} _1,\mathcal{T} _2,\ldots,\mathcal{T} _t)$ of the set of length $m$ strings for which $e_j(\alpha) = \tau _i$. The $\textit{profile}$ k$(\alpha) = ⟨k_1,k_2,\ldots,k_(q-1) ⟩$ of a string $\alpha$ is the sequence of frequencies with which each letter occurs. The profile of $\alpha$ determines $e_j(\alpha)$ , and hence $S_q$. Let $h_n$ : $\mathbb{Z}_{2^{n+d-1}}^{(q-1)}$ $\mapsto \mathbb{Z}_{2^d} [z] $ mod $ z^{2^n}$ be the map that takes k$(\alpha)$ mod $2^{n+d-1}$ to the polynomial $1+ e_1(\alpha) z + e_2(\alpha) z^2 + ⋯+ e_{2^n-1}(\alpha)$ $z^{2^{n-1}}$. We show that $h_n$ is a group homomorphism and establish necessary conditions for membership in the kernel for fixed $d$. The kernel is determined for $d$ = 2,3. The range of $h_n$ is described for $d$ = 2. These results are used to efficiently compute $S_4(m;\mathcal{T} _1,\mathcal{T} _2,\ldots,\mathcal{T} _t)$ for $d$ = 2 and the number of complete factorizations of certain polynomials.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Angela Hicks

International audience In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials $\nabla C_{p1}\dots C_{pk}1$ , where $p=(p_1,\ldots,p_k)$ is a composition, $\nabla$ is the Bergeron-Garsia Macdonald operator and the $C_\alpha$ are certain slightly modified Hall-Littlewood vertex operators. They conjecture that these polynomials enumerate a composition indexed family of parking functions by area, dinv and an appropriate quasi-symmetric function. This refinement of the nearly decade old ``Shuffle Conjecture,'' when combined with properties of the Hall-Littlewood operators can be shown to imply the existence of certain bijections between these families of parking functions. In previous work to appear in her PhD thesis, the author has shown that the existence of these bijections follows from some relatively simple properties of a certain family of polynomials in one variable x with coefficients in $\mathbb{N}[q]$. In this paper we introduce those polynomials, explain their connection to the conjecture of Haglund, Morse, and Zabrocki, and explore some of their surprising properties, both proven and conjectured. Dans un article de 2010, Haglund, Morse et Zabrocki étudient la famille de polynômes $\nabla C_{p1}\dots C_{pk}1$ où $p=(p_1,\ldots,p_k)$ est une composition, $\nabla$ est l’opérateur de Bergeron-Garsia et les $C_\alpha$ sont des opérateurs ``vertex'' de Hall-Littlewood légèrement altérés. Il posent la conjecture que ces polynômes donnent l’énumération d'une famille de fonctions ``parking'', indexées par des compositions, par aire, le ``dinv'' et une fonction quasi-symétrique associée. Cette conjecture raffine la conjecture ``Shuffle'', qui est âgée de presque dix ans. On peut montrer, a partir de cette conjecture, que les propriétés des opérateurs de Hall-Littlewood, impliquent l'existence de certaines bijections entre ces familles de fonctions ``parking''. Dans un précédent travail , qui fait partie de sa thèse de doctorat, l'auteur montre que l’existence de ces bijections découle de certaines propriétés relativement simples d'une famille de polynômes à une variable x, avec coefficients dans $\mathbb{N}[q]$. Dans cet article, on introduit ces polynômes, on explique leur connexion avec la conjecture de Haglund, Morse et Zabrocki, et on explore certaines de leurs propriétés surprenantes, qu'elles soient prouvées ou seulement conjecturées.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Anne Schilling ◽  
Mike Zabrocki

International audience We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c'est-à-dire que nous donnons une formule explicite pour le développement du produit d'une fonction symétrique "somme de puissances'' et d'une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d'algèbre nilCoxeter introduite par Lam et l'analogue affine des fonctions symétriques non commutatives de Fomin et Greene.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jacob White

International audience We present a generalization of the chromatic polynomial, and chromatic symmetric function, arising in the study of combinatorial species. These invariants are defined for modules over lattice rings in species. The primary examples are graphs and set partitions. For these new invariants, we present analogues of results regarding stable partitions, the bond lattice, the deletion-contraction recurrence, and the subset expansion formula. We also present two detailed examples, one related to enumerating subgraphs by their blocks, and a second example related to enumerating subgraphs of a directed graph by their strongly connected components.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Olga Azenhas ◽  
Aram Emami

International audience Using an analogue of the Robinson-Schensted-Knuth (RSK) algorithm for semi-skyline augmented fillings, due to Sarah Mason, we exhibit expansions of non-symmetric Cauchy kernels $∏_(i,j)∈\eta (1-x_iy_j)^-1$, where the product is over all cell-coordinates $(i,j)$ of the stair-type partition shape $\eta$ , consisting of the cells in a NW-SE diagonal of a rectangle diagram and below it, containing the biggest stair shape. In the spirit of the classical Cauchy kernel expansion for rectangle shapes, this RSK variation provides an interpretation of the kernel for stair-type shapes as a family of pairs of semi-skyline augmented fillings whose key tableaux, determined by their shapes, lead to expansions as a sum of products of two families of key polynomials, the basis of Demazure characters of type A, and the Demazure atoms. A previous expansion of the Cauchy kernel in type A, for the stair shape was given by Alain Lascoux, based on the structure of double crystal graphs, and by Amy M. Fu and Alain Lascoux, relying on Demazure operators, which was also used to recover expansions for Ferrers shapes.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Emily Leven

International audience The Classical Shuffle Conjecture of Haglund et al. (2005) has a symmetric function side and a combinatorial side. The combinatorial side $q,t$-enumerates parking functions in the $n ×n$ lattice. The symmetric function side may be simply expressed as $∇ e_n$ , where $∇$ is the Macdonald eigen-operator introduced by Bergeron and Garsia (1999) and $e_n$ is the elementary symmetric function. The combinatorial side has been extended to parking functions in the $m ×n$ lattice for coprime $m,n$ by Hikita (2012). Recently, Gorsky and Negut have been able to extend the Shuffle Conjecture by combining their work (2012a, 2012b, 2013) (related to work of Schiffmann and Vasserot (2011, 2013)) with Hikita's combinatorial results. We prove this new conjecture for the cases $m=2$ and $n=2$ .


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Harm Derksen ◽  
Alex Fink

International audience Many important invariants for matroids and polymatroids, such as the Tutte polynomial, the Billera-Jia-Reiner quasi-symmetric function, and the invariant $\mathcal{G}$ introduced by the first author, are valuative. In this paper we construct the $\mathbb{Z}$-modules of all $\mathbb{Z}$-valued valuative functions for labelled matroids and polymatroids on a fixed ground set, and their unlabelled counterparts, the $\mathbb{Z}$-modules of valuative invariants. We give explicit bases for these modules and for their dual modules generated by indicator functions of polytopes, and explicit formulas for their ranks. Our results confirm a conjecture of the first author that $\mathcal{G}$ is universal for valuative invariants. Beaucoup des invariants importants des matroïdes et polymatroïdes, tels que le polynôme de Tutte, la fonction quasi-symmetrique de Billera-Jia-Reiner, et l'invariant $\mathcal{G}$ introduit par le premier auteur, sont valuatifs. Dans cet article nous construisons les $\mathbb{Z}$-modules de fonctions valuatives aux valeurs entières des matroïdes et polymatroïdes étiquetés définis sur un ensemble fixe, et leurs équivalents pas étiquetés, les $\mathbb{Z}$-modules des invariants valuatifs. Nous fournissons des bases des ces modules et leurs modules duels, engendrés par fonctions caractéristiques des polytopes, et des formules explicites donnant leurs rangs. Nos résultats confirment une conjecture du premier auteur, que $\mathcal{G}$ soit universel pour les invariants valuatifs.


Sign in / Sign up

Export Citation Format

Share Document