scholarly journals Explicit generating series for connection coefficients

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Ekaterina A. Vassilieva

International audience This paper is devoted to the explicit computation of generating series for the connection coefficients of two commutative subalgebras of the group algebra of the symmetric group, the class algebra and the double coset algebra. As shown by Hanlon, Stanley and Stembridge (1992), these series gives the spectral distribution of some random matrices that are of interest to statisticians. Morales and Vassilieva (2009, 2011) found explicit formulas for these generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps on (locally) orientable surfaces and some decorated forests and trees. Thanks to purely algebraic means, we recover the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type $[a,b,1^{n-a-b}]$. Cet article est dédié au calcul explicite des séries génératrices des constantes de structure de deux sous-algèbres commutatives de l'algèbre de groupe du groupe symétrique, l'algèbre de classes et l'algèbre de double classe latérale. Tel que montrè par Hanlon, Stanley and Stembridge (1992), ces séries déterminent la distribution spectrale de certaines matrices aléatoires importantes en statistique. Morales et Vassilieva (2009, 2011) ont trouvè des formules explicites pour ces séries génératrices en termes des monômes symétriques en introduisant une bijection entre les hypercartes partitionnées sur des surfaces (localement) orientables et certains arbres et forêts décorées. Grâce à des moyens purement algébriques, nous retrouvons la formule pour l'algèbre de classe et déterminons une nouvelle formule plus simple pour l'algèbre de double classe latérale. En tant que point saillant de notre démonstration nous calculons une formulation explicite pour les polynômes zonaux indexés par des partitions de type $[a,b,1^{n-a-b}]$.

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Alejandro H. Morales ◽  
Ekaterina A. Vassilieva

International audience This paper is devoted to the evaluation of the generating series of the connection coefficients of the double cosets of the hyperoctahedral group. Hanlon, Stanley, Stembridge (1992) showed that this series, indexed by a partition $ν$, gives the spectral distribution of some random matrices that are of interest in random matrix theory. We provide an explicit evaluation of this series when $ν =(n)$ in terms of monomial symmetric functions. Our development relies on an interpretation of the connection coefficients in terms of locally orientable hypermaps and a new bijective construction between partitioned locally orientable hypermaps and some permuted forests. Cet article est dédié à l'évaluation des séries génératrices des coefficients de connexion des classes doubles (cosets) du groupe hyperoctaédral. Hanlon, Stanley, Stembridge (1992) ont montré que ces séries indexées par une partition $ν$ donnent la distribution spectrale de certaines matrices aléatoires jouant un rôle important dans la théorie des matrices aléatoires. Nous fournissons une évaluation explicite de ces séries dans le cas $ν =(n)$ en termes de monômes symétriques. Notre développement est fondé sur une interprétation des coefficients de connexion en termes d'hypercartes localement orientables et sur une nouvelle bijection entre les hypercartes localement orientables partitionnées et certaines forêts permutées.


1996 ◽  
Vol 48 (3) ◽  
pp. 569-584 ◽  
Author(s):  
I. P. Goulden ◽  
D. M. Jackson

AbstractThe genus series is the generating series for the number of maps (inequivalent two-cell embeddings of graphs), in locally orientable surfaces, closed and without boundary, with respect to vertex- and face-degrees, number of edges and genus. A hypermap is a face two-colourable map. An expression for the genus series for (rooted) hypermaps is derived in terms of zonal polynomials by using a double coset algebra in conjunction with an encoding of a map as a triple of matchings. The expression is analogous to the one obtained for orientable surfaces in terms of Schur functions.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Maciej Dolega ◽  
Valentin Féray

International audience Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating series ψ(x, y, z; t, 1 + β) that might be interpreted as a continuous deformation of the rooted hypermap generating series. They made the following conjecture: coefficients of ψ(x, y, z; t, 1+β) are polynomials in β with nonnegative integer coefficients. We prove partially this conjecture, nowadays called b-conjecture, by showing that coefficients of ψ(x, y, z; t, 1 + β) are polynomials in β with rational coefficients. Until now, it was only known that they are rational functions of β. A key step of the proof is a strong factorization property of Jack polynomials when α → 0 that may be of independent interest.


10.37236/5085 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Andrei L. Kanunnikov ◽  
Ekaterina A. Vassilieva

This article is devoted to the study of Jack connection coefficients, a generalization of the connection coefficients of the classical commutative subalgebras of the group algebra of the symmetric group closely related to the theory of Jack symmetric functions. First introduced by Goulden and Jackson (1996) these numbers indexed by three partitions of a given integer $n$ and the Jack parameter $\alpha$ are defined as the coefficients in the power sum expansion of some Cauchy sum for Jack symmetric functions. Goulden and Jackson conjectured that they are polynomials in $\beta = \alpha-1$ with non negative integer coefficients of combinatorial significance, the Matchings-Jack conjecture.In this paper we look at the case when two of the integer partitions are equal to the single part $(n)$. We use an algebraic framework of Lasalle (2008) for Jack symmetric functions and a bijective construction in order to show that the coefficients satisfy a simple recurrence formula and prove the Matchings-Jack conjecture in this case. Furthermore we exhibit the polynomial properties of more general coefficients where the two single part partitions are replaced by an arbitrary number of integer partitions either equal to $(n)$ or $[1^{n-2}2]$.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Piotr Sniady

International audience In this paper we establish a new combinatorial formula for zonal polynomials in terms of power-sums. The proof relies on the sign-reversing involution principle. We deduce from it formulas for zonal characters, which are defined as suitably normalized coefficients in the expansion of zonal polynomials in terms of power-sum symmetric functions. These formulas are analogs of recent developments on irreducible character values of symmetric groups. The existence of such formulas could have been predicted from the work of M. Lassalle who formulated two positivity conjectures for Jack characters, which we prove in the special case of zonal polynomials. Dans cet article, nous établissons une nouvelle formule combinatoire pour les polynômes zonaux en fonction des fonctions puissance. La preuve utilise le principe de l'involution changeant les signes. Nous en déduisons des formules pour les caractères zonaux, qui sont définis comme les coefficients des polynômes zonaux écrits sur la base des fonctions puissance, normalisés de manière appropriée. Ces formules sont des analogues de développements récents sur les caractères du groupe symétrique. L'existence de telles formules aurait pu être prédite à partir des travaux de M. Lassalle, qui a proposé deux conjectures de positivité sur les caractères de Jack, que nous prouvons dans le cas particulier des polynômes zonaux.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Drew Armstrong

International audience In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions. En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme des nombres q,t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons deux statistiques sur les permutations affines; l'une à partir de l'arrangement d'hyperplans Shi, et l'autre à partir d'un nouvel arrangement — que nous appelons l'arrangement Ish. Nous prouvons que nos statistiques sont équivalentes aux statistiques area' et bounce de Haglund et Loehr. Dans ce contexte, nous observons que bounce s'exprime naturellement comme une statistique sur le réseau des racines. Nous prolongeons nos statistiques dans deux directions: arrangements Shi "étendus'', et chambres bornées associées. Cela conduit à une interprétation (conjecturale) combinatoire pour toutes les puissances entières de l'opérateur nabla de Bergeron-Garsia appliqué aux fonctions symétriques élémentaires.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience We define an action of the $0$-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their $(q,t)$-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics. Nous définissons une action de l’algèbre de Hecke-$0$ de type A sur l’anneau Stanley-Reisner de l’algèbre de Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur $(q,t)$-analogues introduits par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetrique multivariées, qui se spécialisent à la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques de permutation.


10.37236/3226 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Alejandro H. Morales ◽  
Ekaterina A. Vassilieva

We evaluate combinatorially certain connection coefficients of the symmetric group that count the number of factorizations of a long cycle as a product of three permutations. Such factorizations admit an important topological interpretation in terms of unicellular constellations on orientable surfaces. Algebraic computation of these coefficients was first done by Jackson using irreducible characters of the symmetric group. However, bijective computations of these coefficients are so far limited to very special cases. Thanks to a new bijection that refines the work of Schaeffer and Vassilieva, we give an explicit closed form evaluation of the generating series for these coefficients. The main ingredient in the bijection is a modified oriented tricolored tree tractable to enumerate. Finally, reducing this bijection to factorizations of a long cycle into two permutations, we get the analogue formula for the corresponding generating series.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Avinash J. Dalal ◽  
Jennifer Morse

International audience We introduce two families of symmetric functions with an extra parameter $t$ that specialize to Schubert representatives for cohomology and homology of the affine Grassmannian when $t=1$. The families are defined by a statistic on combinatorial objects associated to the type-$A$ affine Weyl group and their transition matrix with Hall-Littlewood polynomials is $t$-positive. We conjecture that one family is the set of $k$-atoms. Nous présentons deux familles de fonctions symétriques dépendant d'un paramètre $t$ et dont les spécialisations à $t=1$ correspondent aux classes de Schubert dans la cohomologie et l'homologie des variétés Grassmanniennes affines. Les familles sont définies par des statistiques sur certains objets combinatoires associés au groupe de Weyl affine de type $A$ et leurs matrices de transition dans la base des polynômes de Hall-Littlewood sont $t$-positives. Nous conjecturons qu'une de ces familles correspond aux $k$-atomes.


1997 ◽  
Vol 49 (5) ◽  
pp. 865-882 ◽  
Author(s):  
I. P. Goulden ◽  
D. M. Jackson

AbstractThe genus series for maps is the generating series for the number of rooted maps with a given number of vertices and faces of each degree, and a given number of edges. It captures topological information about surfaces, and appears in questions arising in statistical mechanics, topology, group rings, and certain aspects of free probability theory. An expression has been given previously for the genus series for maps in locally orientable surfaces in terms of zonal polynomials. The purpose of this paper is to derive an integral representation for the genus series. We then show how this can be used in conjunction with integration techniques to determine the genus series for monopoles in locally orientable surfaces. This complements the analogous result for monopoles in orientable surfaces previously obtained by Harer and Zagier. A conjecture, subsequently proved by Okounkov, is given for the evaluation of an expectation operator acting on the Jack symmetric function. It specialises to known results for Schur functions and zonal polynomials.


Sign in / Sign up

Export Citation Format

Share Document