scholarly journals Secure frameproof codes through biclique covers

2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Hossein Hajiabolhassan ◽  
Farokhlagha Moazami

Graph Theory International audience For a binary code Γ of length v, a v-word w produces by a set of codewords {w1,...,wr}⊆Γ if for all i=1,...,v, we have wi∈{w1i,...,wri} . We call a code r-secure frameproof of size t if |Γ|=t and for any v-word that is produced by two sets C1 and C2 of size at most r then the intersection of these sets is nonempty. A d-biclique cover of size v of a graph G is a collection of v-complete bipartite subgraphs of G such that each edge of G belongs to at least d of these complete bipartite subgraphs. In this paper, we show that for t≥2r, an r-secure frameproof code of size t and length v exists if and only if there exists a 1-biclique cover of size v for the Kneser graph KG(t,r) whose vertices are all r-subsets of a t-element set and two r-subsets are adjacent if their intersection is empty. Then we investigate some connection between the minimum size of d-biclique covers of Kneser graphs and cover-free families, where an (r,w;d) cover-free family is a family of subsets of a finite set such that the intersection of any r members of the family contains at least d elements that are not in the union of any other w members. Also, we present an upper bound for 1-biclique covering number of Kneser graphs.

2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
Ján Maňuch

International audience Let X be a two-element set of words over a finite alphabet. If a bi-infinite word possesses two X-factorizations which are not shiftequivalent, then the primitive roots of the words in X are conjugates. Note, that this is a strict sharpening of a defect theorem for bi-infinite words stated in \emphKMP. Moreover, we prove that there is at most one bi-infinite word possessing two different X-factorizations and give a necessary and sufficient conditions on X for the existence of such a word. Finally, we prove that the family of sets X for which such a word exists is parameterizable.


10.37236/9903 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Luciano N. Grippo ◽  
Adrián Pastine ◽  
Pablo Torres ◽  
Mario Valencia-Pabon ◽  
Juan C. Vera

This paper considers an infection spreading in a graph; a vertex gets infected if at least two of its neighbors are infected. The $P_3$-hull number is the minimum size of a vertex set that eventually infects the whole graph. In the specific case of the Kneser graph $K(n,k)$, with $n\ge 2k+1$, an infection spreading on the family of $k$-sets of an $n$-set is considered. A set is infected whenever two sets disjoint from it are infected. We compute the exact value of the $P_3$-hull number of $K(n,k)$ for $n>2k+1$. For $n = 2k+1$, using graph homomorphisms from the Knesser graph to the Hypercube, we give lower and upper bounds.


2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Karell Bertet ◽  
Mirabelle Nebut

International audience An implication system (IS) on a finite set S is a set of rules called Σ -implications of the kind A →_Σ B, with A,B ⊆ S. A subset X ⊆ S satisfies A →_Σ B when ''A ⊆ X implies B ⊆ X'' holds, so ISs can be used to describe constraints on sets of elements, such as dependency or causality. ISs are formally closely linked to the well known notions of closure operators and Moore families. This paper focuses on their algorithmic aspects. A number of problems issued from an IS Σ (e.g. is it minimal, is a given implication entailed by the system) can be reduced to the computation of closures φ _Σ (X), where φ _Σ is the closure operator associated to Σ . We propose a new approach to compute such closures, based on the characterization of the direct-optimal IS Σ _do which has the following properties: \beginenumerate ıtemit is equivalent to Σ ıtemφ _Σ _do(X) (thus φ _Σ (X)) can be computed by a single scanning of Σ _do-implications ıtemit is of minimal size with respect to ISs satisfying 1. and 2. \endenumerate We give algorithms that compute Σ _do, and from Σ _do closures φ _Σ (X) and the Moore family associated to φ _Σ .


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


2019 ◽  
Vol 28 (06) ◽  
pp. 826-839
Author(s):  
David Ellis ◽  
Noam Lifshitz

AbstractA family of sets is said to be intersecting if any two sets in the family have non-empty intersection. In 1973, Erdős raised the problem of determining the maximum possible size of a union of r different intersecting families of k-element subsets of an n-element set, for each triple of integers (n, k, r). We make progress on this problem, proving that for any fixed integer r ⩾ 2 and for any $$k \le ({1 \over 2} - o(1))n$$, if X is an n-element set, and $${\cal F} = {\cal F}_1 \cup {\cal F}_2 \cup \cdots \cup {\cal F}_r $$, where each $$ {\cal F}_i $$ is an intersecting family of k-element subsets of X, then $$|{\cal F}| \le \left( {\matrix{n \cr k \cr } } \right) - \left( {\matrix{{n - r} \cr k \cr } } \right)$$, with equality only if $${\cal F} = \{ S \subset X:|S| = k,\;S \cap R \ne \emptyset \} $$ for some R ⊂ X with |R| = r. This is best possible up to the size of the o(1) term, and improves a 1987 result of Frankl and Füredi, who obtained the same conclusion under the stronger hypothesis $$k &#x003C; (3 - \sqrt 5 )n/2$$, in the case r = 2. Our proof utilizes an isoperimetric, influence-based method recently developed by Keller and the authors.


2000 ◽  
Vol 9 (3) ◽  
pp. 265-276 ◽  
Author(s):  
N. N. KUZJURIN

For any fixed l < k we present families of asymptotically good packings and coverings of the l-subsets of an n-element set by k-subsets, and an algorithm that, given a natural number i, finds the ith k-subset of the family in time and space polynomial in log n.


2017 ◽  
Vol 16 (12) ◽  
pp. 1750223 ◽  
Author(s):  
Ilinka Dimitrova ◽  
Jörg Koppitz

For [Formula: see text], let [Formula: see text] be an [Formula: see text]-element set and let [Formula: see text] be a fence, also called a zigzag poset. As usual, we denote by [Formula: see text] the symmetric inverse semigroup on [Formula: see text]. We say that a transformation [Formula: see text] is fence-preserving if [Formula: see text] implies that [Formula: see text], for all [Formula: see text] in the domain of [Formula: see text]. In this paper, we study the semigroup [Formula: see text] of all partial fence-preserving injections of [Formula: see text] and its subsemigroup [Formula: see text]. Clearly, [Formula: see text] is an inverse semigroup and contains all regular elements of [Formula: see text] We characterize the Green’s relations for the semigroup [Formula: see text]. Further, we prove that the semigroup [Formula: see text] is generated by its elements with rank [Formula: see text]. Moreover, for [Formula: see text], we find the least generating set and calculate the rank of [Formula: see text].


2020 ◽  
Vol 21 (4) ◽  
pp. 1058-1071
Author(s):  
Jaroslav Janáček ◽  
Lýdia Gábrišová ◽  
Miroslav Plevný

The request of equal accessibility must be respected to some extent when dealing with problems of designing or rebuilding of emergency service systems. Not only the disutility of the average user but also the disutility of the worst situated user must be taken into consideration. Respecting this principle is called fairness of system design. Unfairness can be mitigated to a certain extent by an appropriate fair allocation of additional facilities among the centres. In this article, two criteria of collective fairness are defined in the connection with the facility allocation problem. To solve the problems, we suggest a series of fast algorithms for solving of the allocation problem. This article extends the family of the original solving techniques based on branch-and-bound principle by newly suggested techniques, which exploit either dynamic programming principle or convexity and monotony of decreasing nonlinearities in objective functions. The resulting algorithms were tested and compared performing numerical experiments with real-sized problem instances. The new proposed algorithms outperform the original approach. The suggested methods are able to solve general min-sum and min-max problems, in which a limited number of facilities should be assigned to individual members from a finite set of providers.


Sign in / Sign up

Export Citation Format

Share Document