scholarly journals Finiteness of the space of n-cycles for a reduced (n − 2)-concave complex space

2017 ◽  
Vol Volume 1 ◽  
Author(s):  
Daniel Barlet

EPIGA, Volume 1 (2017), Nr. 5 International audience We show that for n ≥ 2 the space of closed n-cycles in a strongly (n − 2)-concave complex space has a natural structure of reduced complex space locally of finite dimension and represents the functor " analytic family of n-cycles " parametrized by Banach analytic sets. Nous montrons que, pour n ≥ 2, l'espace des n-cycles fermés dans un espace complexe fortement (n − 2)-concave a une structure naturelle d'espace complexe réduit localement de dimension finie et que cet espace représente le foncteur " famille analytique de n-cycles " paramétrée par des ensembles analytiques banachiques.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2018 ◽  
Vol Volume 7, Number 1 (Research articles) ◽  
Author(s):  
Joëlle Coutaz ◽  
James L. Crowley

International audience We present an experience with the development and evaluation of AppsGate, an ecosystem for the home that can be programmed by end-users. We show the benefits from using the homes of the project team members as real-life living-labs. In particular, we discuss the first person perspective experience as an effective way to conduct longitudinal experiments in real world settings. We conclude that a programmable habitat is desirable provided that attention cost is minimized Cet article présente un retour d’expérience avec la mise en oeuvre et l’évaluation d’AppsGate, un écosystème domestique programmable par l’habitant. Nous montrons l’apport de l’utilisation des domiciles de membres du projet tout au long du processus de développement, et notamment l’intérêt de « vivre avec » comme technique d’expérimentation longitudinale


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Rachel Karpman

International audience A <i>parametrization</i> of a positroid variety $\Pi$ of dimension $d$ is a regular map $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ which is birational onto a dense subset of $\Pi$. There are several remarkable combinatorial constructions which yield parametrizations of positroid varieties. We investigate the relationship between two families of such parametrizations, and prove they are essentially the same. Our first family is defined in terms of Postnikov’s <i>boundary measurement map</i>, and the domain of each parametrization is the space of edge weights of a planar network. We focus on a special class of planar networks called <i>bridge graphs</i>, which have applications to particle physics. Our second family arises from Marsh and Rietsch’s parametrizations of Deodhar components of the flag variety, which are indexed by certain subexpressions of reduced words. Projecting to the Grassmannian gives a family of parametrizations for each positroid variety. We show that each Deodhar parametrization for a positroid variety corresponds to a bridge graph, while each parametrization from a bridge graph agrees with some projected Deodhar parametrization. Soit $\Pi$ une variété positroïde. Nous appellerons <i>paramétrisation</i> toute application régulière $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ qui est un isomorphisme birégulier sur un sous-ensemble dense de $\Pi$. On sait que plusieurs constructions combinatoires donnent des paramétrisations intéressantes. Le but du présent article est d’investiguer deux familles de telles paramétrisations et de montrer, essentiellement, qu’elles coïncident. La première famille trouve son origine dans la <i>fonction de mesure des bords</i> de Postnikov. Le domaine de chaque paramétrisation est en ce cas-ci l’ensemble de poids des arêtes d’un réseau planaire pondéré. Nous nous concentrons sur une classe particulière de réseaux planaires, les <i>graphes de ponts</i>, ayant des applications à la physique subatomique. La deuxième famille provient des paramétrisations de Marsh et de Rietsch des composantes de Deodhar (indexées par certaines sous-expressions de mots réduits de permutations) de la variété de drapeaux. On obtient alors des paramétrisations de cellules de positroïdes en appliquant la projection à la grassmannienne. Nous montrons que chaque paramétrisation de Deodhar correspond à un graphe de ponts; d’autre part, chaque paramétrisation provenant d’un graphe de ponts s’accorde avec quelque paramétrisation de Deodhar.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Christopher J. Hillar ◽  
Lionel Levine ◽  
Darren Rhea

International audience We study equations in groups $G$ with unique $m$-th roots for each positive integer $m$. A word equation in two letters is an expression of the form$ w(X,A) = B$, where $w$ is a finite word in the alphabet ${X,A}$. We think of $A,B ∈G$ as fixed coefficients, and $X ∈G$ as the unknown. Certain word equations, such as $XAXAX=B$, have solutions in terms of radicals: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, while others such as $X^2 A X = B$ do not. We obtain the first known infinite families of word equations not solvable by radicals, and conjecture a complete classification. To a word w we associate a polynomial $P_w ∈ℤ[x,y]$ in two commuting variables, which factors whenever $w$ is a composition of smaller words. We prove that if $P_w(x^2,y^2)$ has an absolutely irreducible factor in $ℤ[x,y]$, then the equation $w(X,A)=B$ is not solvable in terms of radicals. Nous étudions des équations dans les groupes $G$ avec les $m$-th racines uniques pour chaque nombre entier positif m. Une équation de mot dans deux lettres est une expression de la forme $w(X, A) = B$, où $w$ est un mot fini dans l'alphabet ${X, A}$. Nous pensons $A, B ∈G$ en tant que coefficients fixes, et $X ∈G$ en tant que inconnu. Certaines équations de mot, telles que $XAXAX=B$, ont des solutions en termes de radicaux: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, alors que d'autres tel que $X^2 A X = B$ ne font pas. Nous obtenons les familles infinies d'abord connues des équations de mot non solubles par des radicaux, et conjecturons une classification complété. Á un mot $w$ nous associons un polynôme $P_w ∈ℤ[x, y]$ dans deux variables de permutation, qui factorise toutes les fois que $w$ est une composition de plus petits mots. Nous montrons que si $P_w(x^2, y^2)$ a un facteur absolument irréductible dans $ℤ[x, y]$, alors l'équation $w(X, A)=B$ n'est pas soluble en termes de radicaux.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel

International audience A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. We extend this result by finding the generating function for (2+2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form $P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$ where $p_n,k$ equals the number of (2+2)-free posets of size $n$ with $k$ minimal elements. Un poset sera dit (2+2)-libre s'il ne contient aucun sous-poset isomorphe à 2+2, l'union disjointe de deux chaînes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l'aide de "suites de montées'', la fonction génératrice des nombres de posets (2+2)-libres: c'est $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. Nous étendons ce résultat en trouvant la fonction génératrice des posets (\textrm2+2)-libres rendant compte de quatre statistiques, dont le nombre d'éléments minimaux du poset. Nous montrons aussi que lorsqu'on ne s'intéresse qu'au nombre d'éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en$P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$, où $p_n,k$ est le nombre de posets (2+2)-libres de taille $n$ avec $k$ éléments minimaux.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Bridget Eileen Tenner

International audience The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n-1)-dimensional spheres. The number of these spheres is the boolean number, which can be computed inductively from the unlabeled Coxeter system, thus defining a graph invariant. For certain families of graphs, the boolean numbers have intriguing combinatorial properties. This work involves joint efforts with Claesson, Kitaev, and Ragnarsson. \par L'ordre de Bruhat munit tout groupe de Coxeter d'une structure de poset. L'idéal composé des éléments de ce poset engendrant des idéaux principaux ordonnés booléens, forme un poset simplicial. Ce poset simplicial définit le complexe booléen pour le groupe. Dans un système de Coxeter de rang n, nous montrons que le complexe booléen est homotopiquement équivalent à un bouquet de sphères de dimension (n-1). Le nombre de ces sphères est le nombre booléen, qui peut être calculé inductivement à partir du système de Coxeter non-étiquetté; définissant ainsi un invariant de graphe. Pour certaines familles de graphes, les nombres booléens satisfont des propriétés combinatoires intriguantes. Ce travail est une collaboration entre Claesson, Kitaev, et Ragnarsson.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Charles Buehrle ◽  
Mark Skandera

International audience We use the polynomial ring $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $S_n$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. We also show that our modules are related by unitriangular transition matrices to those constructed by Clausen in [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. This provides a $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analog of results of Garsia-McLarnan in [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)]. Nous utilisons l'anneau $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ pour modifier la construction Kazhdan-Lusztig des modules-$S_n$ irréductibles dans $\mathbb{C}[S_n]$. Cette construction modifiée produit exactement les mêmes matrices que la construction originale dans [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Nous montrons aussi que nos modules sont reliés par des matrices unitriangulaires aux modules construits par Clausen dans [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. Ce résultat donne un $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analogue des résultats de Garsia-McLarnan dans [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)].


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Eric Clark ◽  
Richard Ehrenborg

International audience Motivated by the classical Frobenius problem, we introduce the Frobenius poset on the integers $\mathbb{Z}$, that is, for a sub-semigroup $\Lambda$ of the non-negative integers $(\mathbb{N},+)$, we define the order by $n \leq_{\Lambda} m$ if $m-n \in \Lambda$. When $\Lambda$ is generated by two relatively prime integers $a$ and $b$, we show that the order complex of an interval in the Frobenius poset is either contractible or homotopy equivalent to a sphere. We also show that when $\Lambda$ is generated by the integers $\{a,a+d,a+2d,\ldots,a+(a-1)d\}$, the order complex is homotopy equivalent to a wedge of spheres. Motivé par le problème de Frobenius classique, nous introduisons l'ensemble partiellement ordonné de Frobenius sur les entiers $\mathbb{Z}$, c.à.d. que pour un sous-semigroupe $\Lambda$ de les entiers non-négatifs $(\mathbb{N},+)$ nous définissons l'ordre par $n \leq_{\Lambda} m$ si $m-n \in \Lambda$. Quand le $\Lambda$ est engendré par deux nombres $a$ et $b$, relativement premiers entre eux, nous montrons que le complexe des chaînes d'un intervalle quelconque dans l'ensemble partiellement ordonné de Frobenius est soit contractible soit homotopiquement équivalent à une sphère. Nous montrons aussi que dans le cas où $\Lambda$ est engendré par les entiers $\{a,a+d,a+2d,\ldots,a+(a-1)d\}$, le complexe des chaînes a le type de homotopie d'un bouquet de sphères.


Sign in / Sign up

Export Citation Format

Share Document