scholarly journals Is the binomial coefficient $2n \choose n$ square free?

1995 ◽  
Vol Volume 18 ◽  
Author(s):  
G Velammal

International audience In this paper, we prove the Erd\"os conjecture that the binomial coefficient ${2n \choose n}$ is never square free, for all $n>4$.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Sara Billey ◽  
Matthew Fahrbach ◽  
Alan Talmage

International audience Given a permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$, we say an index $i$ is a peak if $\pi_{i-1} < \pi_i > \pi_{i+1}$. Let $P(\pi)$ denote the set of peaks of $\pi$. Given any set $S$ of positive integers, define ${P_S(n)=\{\pi\in S_n:P(\pi)=S\}}$. Billey-Burdzy-Sagan showed that for all fixed subsets of positive integers $S$ and sufficiently large $n$, $|P_S(n)|=p_S(n)2^{n-|S|-1}$ for some polynomial $p_S(x)$ depending on $S$. They conjectured that the coefficients of $p_S(x)$ expanded in a binomial coefficient basis centered at $max(S)$ are all positive. We show that this is a consequence of a stronger conjecture that bounds the modulus of the roots of $p_S(x)$. Furthermore, we give an efficient explicit formula for peak polynomials in the binomial basis centered at $0$, which we use to identify many integer roots of peak polynomials along with certain inequalities and identities. Etant donné une permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$ du groupe symétrique, nous disons qu’un indice i est unsommet si $\pi_{i-1} < \pi_i > \pi_{i+1}$. Soit $P(\pi)$ l’ensemble des sommets de $\pi$. Billey-Burdzy-Sagan ont montré que,pour tout sous-ensemble d’entiers positifs S et n suffisamment grand, le nombre de permutations de $n$ éléments avecensemble de sommets $S$ est $|P_S(n)|=p_S(n)2^{n-|S|-1}$ pour un certain polynôme $p_S(x)$ dépendant de $S$.. Ils ont fait la conjectureque les coefficients du polynôme $p_S(x)$ exprimé dans une base de coefficients binomiaux centrée en $max(S)$ sont touspositifs. Nous montrons que cela découle d’une conjecture plus forte qui borne le module des racines du polynôme$p_S(x)$. De plus, nous donnons une formule explicite efficace pour les polynômes sommets dans la base binomialecentrée en $0$, que nous utilisons pour identifier plusieurs racines entières de polynômes sommets, ainsi que certainesinégalités et identités.


2010 ◽  
Vol Vol. 12 no. 3 (Combinatorics) ◽  
Author(s):  
Ioannis C. Michos

Combinatorics International audience M.-P. Schutzenberger asked to determine the support of the free Lie algebra L(Zm) (A) on a finite alphabet A over the ring Z(m) of integers mod m and all pairs of twin and anti-twin words, i.e., words that appear with equal (resp. opposite) coefficients in each Lie polynomial. We characterize the complement of the support of L(Zm) (A) in A* as the set of all words w such that m divides all the coefficients appearing in the monomials of l* (w), where l* is the adjoint endomorphism of the left normed Lie bracketing l of the free Lie ring. Calculating l* (w) via the shuffle product, we recover the well known result of Duchamp and Thibon (Discrete Math. 76 (1989) 123-132) for the support of the free Lie ring in a much more natural way. We conjecture that two words u and v of common length n, which lie in the support of the free Lie ring, are twin (resp. anti-twin) if and only if either u = v or n is odd and u = (v) over tilde (resp. if n is even and u = (v) over tilde), where (v) over tilde denotes the reversal of v and we prove that it suffices to show this for a two-lettered alphabet. These problems can be rephrased, for words of length n, in terms of the action of the Dynkin operator l(n) on lambda-tabloids, where lambda is a partition of n. Representing a word w in two letters by the subset I of [n] = \1, 2, ... , n\ that consists of all positions that one of the letters occurs in w, the computation of l* (w) leads us to the notion of the Pascal descent polynomial p(n)(I), a particular commutative multi-linear polynomial which is equal to the signed binomial coefficient when vertical bar I vertical bar = 1. We provide a recursion formula for p(n) (I) and show that if m inverted iota Sigma(i is an element of I)(1)(i-1) (n - 1 i - 1), then w lies in the support of L(Zm) (A).


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Ömer Eugeciouglu ◽  
Timothy Redmond ◽  
Charles Ryavec

International audience This paper makes use of the recently introduced technique of $\gamma$-operators to evaluate the Hankel determinant with binomial coefficient entries $a_k = (3 k)! / (2k)! k!$. We actually evaluate the determinant of a class of polynomials $a_k(x)$ having this binomial coefficient as constant term. The evaluation in the polynomial case is as an almost product, i.e. as a sum of a small number of products. The $\gamma$-operator technique to find the explicit form of the almost product relies on differential-convolution equations and establishes a second order differential equation for the determinant. In addition to $x=0$, product form evaluations for $x = \frac{3}{5}, \frac{3}{4}, \frac{3}{2}, 3$ are also presented. At $x=1$, we obtain another almost product evaluation for the Hankel determinant with $a_k = ( 3 k+1) ! / (2k+1)!k!$.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Ricardo Mamede

International audience The total number of noncrossing partitions of type $\Psi$ is the $n$th Catalan number $\frac{1}{ n+1} \binom{2n}{n}$ when $\Psi =A_{n-1}$, and the binomial coefficient $\binom{2n}{n}$ when $\Psi =B_n$, and these numbers coincide with the correspondent number of nonnesting partitions. For type $A$, there are several bijective proofs of this equality; in particular, the intuitive map, which locally converts each crossing to a nesting, is one of them. In this paper we present a bijection between nonnesting and noncrossing partitions of types $A$ and $B$ that generalizes the type $A$ bijection that locally converts each crossing to a nesting. Le nombre total des partitions non-croisées du type $\Psi$ est le $n$-ème nombre de Catalan $\frac{1}{ n+1} \binom{2n}{n}$ si $\Psi =A_{n-1}$, et le coefficient binomial $\binom{2n}{n}$ si $\Psi =B_n$, et ces nombres son coïncidents avec le nombre correspondant des partitions non-emboîtées. Pour le type $A$, il y a plusieurs preuves bijectives de cette égalité; en particulier, la intuitive fonction, qui convertit localement chaque croisée en une emboîtée, c'est un d'entre eux. Dans ce papier nous présentons une bijection entre partitions non-croisées et non-emboîtées des types $A$ et $B$ qui généralise la bijection du type $A$ qui localement convertit chaque croisée en une emboîtée.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Eric Nordenstam ◽  
Benjamin Young

International audience We study random lozenge tilings of a certain shape in the plane called the Novak half-hexagon, and compute the correlation functions for this process. This model was introduced by Nordenstam and Young (2011) and has many intriguing similarities with a more well-studied model, domino tilings of the Aztec diamond. The most difficult step in the present paper is to compute the inverse of the matrix whose (i,j)-entry is the binomial coefficient $C(A, B_j-i)$ for indeterminate variables $A$ and $B_1, \dots , B_n.$ Nous étudions des pavages aléatoires d'une region dans le plan par des losanges qui s'appelle le demi-hexagone de Novak et nous calculons les corrélations de ce processus. Ce modèle a été introduit par Nordenstam et Young (2011) et a plusieurs similarités des pavages aléatoires d'un diamant aztèque par des dominos. La partie la plus difficile de cet article est le calcul de l'inverse d'une matrice ou l’élément (i,j) est le coefficient binomial $C(B_j-i, A)$ pour des variables $A$ et $B_1, \dots , B_n$ indéterminés.


Author(s):  
C. Claire Thomson

Building on the picture of post-war Anglo-Danish documentary collaboration established in the previous chapter, this chapter examines three cases of international collaboration in which Dansk Kulturfilm and Ministeriernes Filmudvalg were involved in the late 1940s and 1950s. They Guide You Across (Ingolf Boisen, 1949) was commissioned to showcase Scandinavian cooperation in the realm of aviation (SAS) and was adopted by the newly-established United Nations Film Board. The complexities of this film’s production, funding and distribution are illustrative of the activities of the UN Film Board in its first years of operation. The second case study considers Alle mine Skibe (All My Ships, Theodor Christensen, 1951) as an example of a film commissioned and funded under the auspices of the Marshall Plan. This US initiative sponsored informational films across Europe, emphasising national solutions to post-war reconstruction. The third case study, Bent Barfod’s animated film Noget om Norden (Somethin’ about Scandinavia, 1956) explains Nordic cooperation for an international audience, but ironically exposed some gaps in inter-Nordic collaboration in the realm of film.


Author(s):  
Alistair Fox

The conclusion reaffirms the essential role played by cinema generally, and the coming-of-age genre in particular, in the process of national identity formation, because of its effectiveness in facilitating self-recognition and self-experience through a process of triangulation made possible, for the most part, by a dialogue with some of the nation’s most iconic works of literature. This section concludes by point out the danger posed, however, by an observable trend toward generic standardization in New Zealand films motivated by a desire to appeal to an international audience out of consideration for the financial returns expected by funding bodies under current regimes.


This collection of essays, drawn from a three-year AHRC research project, provides a detailed context for the history of early cinema in Scotland from its inception in 1896 till the arrival of sound in the early 1930s. It details the movement from travelling fairground shows to the establishment of permanent cinemas, and from variety and live entertainment to the dominance of the feature film. It addresses the promotion of cinema as a socially ‘useful’ entertainment, and, distinctively, it considers the early development of cinema in small towns as well as in larger cities. Using local newspapers and other archive sources, it details the evolution and the diversity of the social experience of cinema, both for picture goers and for cinema staff. In production, it examines the early attempts to establish a feature film production sector, with a detailed production history of Rob Roy (United Films, 1911), and it records the importance, both for exhibition and for social history, of ‘local topicals’. It considers the popularity of Scotland as an imaginary location for European and American films, drawing their popularity from the international audience for writers such as Walter Scott and J.M. Barrie and the ubiquity of Scottish popular song. The book concludes with a consideration of the arrival of sound in Scittish cinemas. As an afterpiece, it offers an annotated filmography of Scottish-themed feature films from 1896 to 1927, drawing evidence from synopses and reviews in contemporary trade journals.


Mediaevistik ◽  
2018 ◽  
Vol 31 (1) ◽  
pp. 327-327
Author(s):  
Albrecht Classen

The papers combined in this volume were originally presented at a conference at the Royal Swedish Academy of Letters, History and Antiquities in Stockholm, June 11–12, 2015. The explicit purpose of this event and the subsequent volume was to expose the work of Swedish and other scholars on the genre of biographies to an international audience, reflecting on life-writing or ego-documents, emphasizing spiritual autobiographies. According to the brief bios at the end of the book, Robert Swanson, for instance, is Emeritus Professor at Binghamton University; Jean-Mark Ticchi teaches at the Centre d’Etudes en Sciences Sociales du Religieux in Paris; and Enock Bongani Zulu was lecturer at the Lutheran Theological Institute in Pietermaritzburg, South Africa. The book cover is decorated with an image showing a page in Margery Kempe’s Book from ca. 1440, indicating that the focus might rest on the Middle Ages. This is only very partially the case.


Sign in / Sign up

Export Citation Format

Share Document