Chemical and physical properties of two tropical soils treated with sewage sludge compost

1969 ◽  
Vol 83 (3-4) ◽  
pp. 103-121
Author(s):  
Gustavo A. Martínez ◽  
José L. Guzmán ◽  
Miguel A. Vázquez ◽  
Luis E. Rivera ◽  
Agenol González

The effects of sewage sludge compost applications on a Mollisol and an Ultisol of Puerto Rico were evaluated. Experimental rates were control (0 compost), 37, 74, and 148 t/ha/yr, which were to be applied during a three year period. In addition, a treatment consisting of a single application of 445 t/ha was included to assess the impact of single massive applications vs. continuous applications of compost. Results here presented pertain exclusively to the project's first year. The compost was obtained from the sewage sludge compost facility of Puerto Rico's Solid Waste Management Authority in Arecibo. The material was predominantly inorganic and exhibited a high soluble salt content, which diminished its quality. Compost additions caused significant pH increases in both soils. The effects were more noticeable on the Ultisol (Corozal clay), where pH increased from 4.55 in the control to 6.45 with the lowest compost treatment. The electrical conductivity of both soils increased considerably with compost additions, sometimes approaching limits considered detrimental to support crop growth. The organic matter content of both soils also increased with compost additions. This increase had a positive effect on their water retention capacity. Nitrogen contributions from the compost were minimal. However, significant increases in the levels of phosphorus were observed in both soils. Compost additions caused significant increases in the levels of EDTA extractable metals (i.e., Cu, Zn, Cd, Cr, Fe). However, elements regulated by the U.S. Environmental Protection Agency (e.g., Cd, Pb, Cr) were added in amounts well below the established limits, and thus were not a reason for concern.

2019 ◽  
Vol 37 (5) ◽  
pp. 502-507 ◽  
Author(s):  
Ana Pérez-Gimeno ◽  
José Navarro-Pedreño ◽  
María Belén Almendro-Candel ◽  
Ignacio Gómez ◽  
Antonis A Zorpas

The great extent of degraded soils in southeast Spain makes it necessary to carry out restoration and rehabilitation strategies. In addition, the great amount of wastes produced need to be properly managed. Several types of wastes and amendments (organic and inorganic) can be applied for soil rehabilitation and land restoration. When large areas must be restored several aspects should be considered, such as availability of the waste, its characteristics, and transport. This research focuses on the characterization and the cost of 12 waste types and amendments (such as sewage sludge compost, brown peat, black peat, fertilized peat, earthworm humus, straw hay, palm tree leaves, pine bark, exfoliated vermiculite, expanded perlite, limestone outcrops, and volcanic crushed stones) obtained from four different sources. All of them were characterized following the UNE standards for soil amendments and the cost was obtained as a mean value of four different sources. The results indicate a great variability of properties between organic and inorganic materials, as was expected. Depending on the type of restoration, the characteristics, and the cost, the materials can be selected for an adequate purpose. Sewage sludge compost is a good alternative for application in large areas related to its characteristics (organic matter content and nutrient availability) and low cost. For inorganic amendments, natural limestone outcrops were the low-cost alternative. The use of both wastes (composted sewage sludge and limestone raw materials) for soil rehabilitation can facilitate the reduction of landfill disposal and add value for these wastes. Moreover, the results are very useful for scientists and engineers who deal with the development of rehabilitation and restoration strategies.


Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David J. Peterman ◽  
Kathleen A. Ritterbush ◽  
Charles N. Ciampaglio ◽  
Erynn H. Johnson ◽  
Shinya Inoue ◽  
...  

AbstractThe internal architecture of chambered ammonoid conchs profoundly increased in complexity through geologic time, but the adaptive value of these structures is disputed. Specifically, these cephalopods developed fractal-like folds along the edges of their internal divider walls (septa). Traditionally, functional explanations for septal complexity have largely focused on biomechanical stress resistance. However, the impact of these structures on buoyancy manipulation deserves fresh scrutiny. We propose increased septal complexity conveyed comparable shifts in fluid retention capacity within each chamber. We test this interpretation by measuring the liquid retained by septa, and within entire chambers, in several 3D-printed cephalopod shell archetypes, treated with (and without) biomimetic hydrophilic coatings. Results show that surface tension regulates water retention capacity in the chambers, which positively scales with septal complexity and membrane capillarity, and negatively scales with size. A greater capacity for liquid retention in ammonoids may have improved buoyancy regulation, or compensated for mass changes during life. Increased liquid retention in our experiments demonstrate an increase in areas of greater surface tension potential, supporting improved chamber refilling. These findings support interpretations that ammonoids with complex sutures may have had more active buoyancy regulation compared to other groups of ectocochleate cephalopods. Overall, the relationship between septal complexity and liquid retention capacity through surface tension presents a robust yet simple functional explanation for the mechanisms driving this global biotic pattern.


2013 ◽  
Vol 20 (2) ◽  
pp. 303-320
Author(s):  
Ewa Krzywy-Gawrońska

Abstract A single-factor field experiment was carried out at the Cultivar Evaluation Station in Szczecin-Dabie in 2008-2010. The soil on which this experiment was set up is formed from light loamy sand (lls). In respect of granulometric composition, it is classified to the category of light soils, of soil quality class IV b and good rye complex. In the experiment, compost produced with municipal sewage sludge by the GWDA method was used. This compost contained clearly more nitrogen and phosphorus in relation to potassium. The content of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) in composts did not exceed standards of the Regulation of the Minister of Agriculture and Rural Development (Official Journal of Laws No. 165, item 765 of 2008) referring to organic fertilisers. In the study design, the following fertilisation treatments were applied: I - carbonate lime (CaCO3) at a dose of 1.5 Mg CaO · ha-1, II - high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1, III - municipal sewage sludge compost at a dose of 250 kg N·ha-1, IV - municipal sewage sludge compost at a dose of 250 kg N · ha-1 + high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1 (1st year of study), V - high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1 (1st year of study), and 0.75 Mg CaO · ha-1 in following study years each, VI - municipal sewage sludge compost at a dose of 250 kg N · ha-1 + high-calcium brown coal ash at a dose of 1.5 Mg CaO · ha-1 (1st year of study), and 0.75 Mg CaO · ha-1 in following study years each. In addition, mineral fertilisation was applied annually in the form of multi-component fertiliser Polifoska 20, complex fertiliser Polimag S and ammonium nitrate. A test plant was perennial grass - Amur silver grass (Miscanthus sachariflorus). The obtained results show that Amur silver grass biomass contained on average the most nitrogen, ie 6.87 g·kg-1 d.m., in 2008, while the most phosphorus (0.39 g P·kg-1 d.m.), potassium (7.82 g K·kg-1 d.m.), magnesium (0.98 g Mg·kg-1 d.m.) and sulphur (1.19 g S·kg-1 d.m.) in 2010, whereas the most calcium ie 4.13 g Ca kg-1 d.m., in 2009. Significantly more nitrogen, calcium and sulphur was contained by Amur silver grass biomass from the objects where municipal sewage sludge compost had been applied without and with addition of high-calcium brown coal ash when compared to calcium carbonate or high-calcium brown coal ash being applied at a dose of 1.5 Mg CaO · ha-1. Differences in average phosphorus, potassium and magnesium contents in test plant biomass from particular fertilisation objects were not significant. The biomass of Amur silver grass contained significantly more cadmium, nickel, lead and zinc as affected by organic fertilisation without and with addition of high-calcium brown coal ash when compared with the objects where solely calcium carbonate or high-calcium brown coal ash had been introduced into soil. Differences in the average content of cadmium, nickel and zinc in test plant biomass from the objects fertilised with municipal sewage sludge compost without and with addition of high-calcium brown coal ash were not significant. The uptake of heavy metals by Amur silver grass biomass, ie its mean value of three harvest during three years of its cultivation, can be arranged in the following descending order of values: Zn > Mn > Pb > Cu > Ni > Cd. The degree of cadmium, copper, manganese, nickel, lead and zinc bioaccumulation in test plant biomass differed, depending on the fertilisation applied. The average degree of cadmium, nickel, lead and zinc accumulation after three study years was intense for all fertilisation objects, whereas average for copper and manganese.


Sign in / Sign up

Export Citation Format

Share Document