scholarly journals Production and quality of 'Hamlin' sweet orange [Citrus sinensis (L.) Osb.] grown on four rootstocks at three locations in Puerto Rico.

1969 ◽  
Vol 95 (1-2) ◽  
pp. 25-34
Author(s):  
Félix M. Román-Pérez ◽  
Agenol González-Vélez ◽  
Raúl Macchiavelli

The 'Hamlin' sweet orange [Citrus sinensis (L.) Osb.] was evaluated in Isabela, Adjuntas and Corozal, Puerto Rico. This cultivar Is an early producer and Is used mainly by the Industry for juice. The cultivar was grafted to the rootstocks 'Swingle Citrumelo', 'Carrizo', Cleopatra' and 'Sun Chu Sha'. For six years, production, growth and fruit quality data [pH, total soluble solids (TSS), titrable acidity and TSS/acid ratio] were recorded to evaluate horticultural traits. Significant differences were detected In mean fruit number per tree between Corozal and the other sites. The highest yields were obtained at Corozal for the rootstock Sun Chu Sha. Yields at Isabela and Adjuntas were similar. In terms of growth, Swingle Citrumelo and Carrizo showed significantly smaller height and canopy volume. No significant differences were detected for fruit quality among the rootstocks at the three sites. At Isabela we observed the best maturity Index (TSS/acid ratio) for all the rootstocks (17.3). This cultivar could be recommended for planting in coastal areas such as Isabela for availability of ripe fruit In the months when there are none in the higher altitudes, from September to November. With regard to locality and yield, the best performance for this cultivar among all the rootstocks was observed at Corozal.

1969 ◽  
Vol 85 (3-4) ◽  
pp. 143-149
Author(s):  
Félix M. Román-Pérez ◽  
Agenol González-Vélez

Performance of the rootstocks 'Swingle citrumelo', 'Naronja' and mandarins 'Cleopatra' and 'Sun Chu Sha' on 'Washington Navel' orange [Citrus sinensis (L.)] was evaluated at Corozal and Isabela, Puerto Rico, during the first four years of production. Mean number of fruit per tree was significantly different between locations and among rootstocks for 1996-97 and 1997- 98. Data were not taken in 1998-99 because of damage caused by Hurricane Georges. The first two years the amount of fruit was significantly higher at Corozal than at Isabela, with Swingle producing greatest fruit yield. In 1999-00 (fourth year of production) no significant differences between locations were detected for tree canopy volume. Significant differences for internal fruit quality were detected between locations and among rootstocks for acidity, brix/acidity ratio and pH. No significant differences were observed for brix between locations or among rootstocks.


2016 ◽  
Vol 38 (4) ◽  
Author(s):  
NATIANA DE OLIVEIRA FRANÇA ◽  
MAURICIO DA SILVA AMORIM ◽  
EDUARDO AUGUSTO GIRARDI ◽  
ORLANDO SAMPAIO PASSOS ◽  
WALTER DOS SANTOS SOARES FILHO

ABSTRACT In the State of Bahia, Brazil, the citrus industry is located on the north coast with the prevalence of the combination ‘Pera’ sweet orange on ‘Rangpur’ lime. Scion-rootstock diversification may contribute to the increase of yield and the extension of harvest season, as long as to decrease the risk associated to abiotic and biotic stresses. Therefore, the performance of ‘Tuxpan Valencia’ sweet orange grafted onto 14 rootstocks was evaluated in Rio Real – BA. Planting was performed in 2006 under rainfed cultivation on cohesive ultisol and tree spacing of 6.0 m x 4.0 m. Tree size, yield and fruit quality were evaluated in the period of 2010-2014, in addition to tree survival at nine years old and drought tolerance in the field based on leaf wilting. In the evaluated conditions, ‘Sunki Tropical’ and ‘Sunki Maravilha’ mandarins led to the highest scion canopy volume. The highest accumulated yield in five harvests was recorded on ‘Santa Cruz Rangpur’ lime, ‘Volkamer’ lemon, ‘Riverside’ and ‘Indio’ citrandarins, ‘Sunki Tropical’ mandarin and the hybrid TSKC x (LCR x TR) – 001. ‘Riverside’ and TSKFL x CTSW – 049 induced higher yield efficiency on the canopy. The rootstocks did not influence the tree survival nine years after planting except for lower survival of TSKFL x CTSW – 049. Drought tolerance was not affected either. Regarding to the fruit quality of ‘Tuxpan Valencia’, the rootstocks influenced the juice content, soluble solids and technological index with the citrandarins, ‘Santa Cruz Rangpur’ lime, ‘Volkamer’ lemon and ‘Sunki Tropical’ mandarin presenting higher performance in general.


Horticulturae ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 30
Author(s):  
Rebecca Tirado-Corbalá ◽  
Alejandro Segarra-Carmona ◽  
Manuel Matos-Rodríguez ◽  
Dania Rivera-Ocasio ◽  
Consuelo Estévez de Jensen ◽  
...  

Sweet oranges in Puerto Rico and other citrus-producing areas in the world have been greatly affected by the Huanglongbing disease (HLB). Historically, most of Puerto Rico’s citrus production has been located from 0–600 m above sea level, where fruit acquire a desirable color and flavor due to climatic conditions. However, higher populations of the disease vector Diaphorina citri Kuwayama have been reported at these elevations in Puerto Rico. Although only 6.4% of the land area is located above 600 m, it is composed mainly of environmentally sensitive or non-arable land where Inceptisols are the dominant soil order. For that reason, ‘Marr’s Early’ and ‘Pera’ sweet orange (Citrus sinensis) scions grafted on ‘Carrizo’, ‘HRS 802’, and ‘HRS 812’ rootstocks were planted in Alonso clay series Inceptisol (Oxic Humudepts) at 649 m in 2010. Tree growth parameters (height, diameter, canopy volume) and yield efficiency were measured. Fruit quality was determined from juice content (%), total soluble solids [°Brix], and pH. Leaf tissue analyses showed an optimum range for Ca, Mg, Na, P, B, Cu, and Zn, an indicator of tree health. A few were high (i.e., N and P) or in excess (i.e., Fe), but no clear connection to specific scions or rootstocks could be established. Tree height, tree diameter, fruit production, and juice content were higher in both sweet oranges grafted on ‘HRS 802’ compared with those on ‘HRS 812’ and ‘Carrizo’. Therefore, ‘HRS 802’ rootstock can be recommended to local farmers growing sweet oranges in Alonso series soil.


2015 ◽  
Vol 33 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Heberth Augusto Velásquez ◽  
Javier Orlando Orduz-Rodríguez

‘Valencia’ sweet orange is widely cultivated in Colombian tropical lowlands, with low yields and a lack of technology. As a result, nine rootstocks commonly used in tropical zones: ‘C-35’, ‘Carrizo’, ‘Swingle’ citrumelo or CPB 4475, ‘Cleopatra’, ‘Sunki ´ English’, ‘Volkamer’, ‘Webberi’ and ‘Yuma’ were evaluated. The plants were established in 2001 and were evaluated for vegetative growth, fruit yield and quality for 10 years (2004-2013). The obtained results indicated that ‘Sunki × English’ and ‘Volkamer’ were the best rootstocks for fruit yield and the worst was ‘Yuma’. Furthermore, all of the rootstocks, except ‘Yuma’, stabilized their height in the last year. In terms of volume, ‘Amblycarpa’ and ‘Cleopatra’ were the bigger plants and ‘Yuma’ was the smallest. In addition, for yield efficiency, ‘Yuma’ had the best rootstocks, followed by ‘Sunki × English’. All of the rootstocks showed a similar fruit quality, except for ‘Sunki × English’, which obtained the highest total soluble solids/total titratable acids ratio.


2020 ◽  
Vol 118 ◽  
pp. 126071 ◽  
Author(s):  
Gregorio Gullo ◽  
Antonio Dattola ◽  
Vincenzo Vonella ◽  
Rocco Zappia

Author(s):  
Suchismita Jena ◽  
Ramesh K. Goyal ◽  
Anil K. Godhara ◽  
Abhilash Mishra

Aims:  To evaluate the potentiality of bio-extract coatings for achieving extended shelf life with enhance fruit quality attributes in pomegranate under ambient storage condition.  Study Design:  The lab experiment conducted in complete randomized design with three repetitions on Mridula cultivar of pomegranate.     Place and Duration of Study:  The experiment was conducted during September 2016 at department of fruit science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India. Methodology: Pomegranate freshly harvested fruits were coated with three bio-extracts coatings viz. Aloe vera (50,75 and 100%), ginger (1,2 and 3%) and mints (10,20 and 30%). The coated fruits were stored at ambient room condition in corrugated fiber board boxes for twelve days.  Periodically effects of bio-extract coatings, storage period and their interaction were observed for physiological loss in weight, decay loss, juice content, TSS: acid ratio, ascorbic acid content and anthocyanin content.    Results: Surface coating with Aloe vera extract 100% was found most effective in reducing physiological loss in weight (50% less reduction as compared to untreated control) whereas ginger extract 3% in reducing the decay loss of fruits (9.65%) as compared to untreated control (23.36%). Among various treatments, the coating of pomegranate fruits with Aloe vera extract 100% resulted in lowest total soluble solids to acid ratio (32.17%) and significantly highest content of juice (47.17%), anthocyanin (13.98 mg/100 g) and ascorbic acid (12.82 mg/100 g) of the fruits along with highest organoleptic rating. The quality attributes viz. total soluble solids to acid ratio, anthocyanin of fruits increased with progression of storage period, while juice content and ascorbic acid decreased. Conclusion: Bio-extract coating of Aloe vera (100%) substantially improved the shelf life with retaining better fruit quality attributes under ambient conditions and has the potential to substitute the prevalent chemical coatings for pomegranate.  


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 868D-868
Author(s):  
Jude W. Grosser* ◽  
J.L. Chandler ◽  
R.M. Goodrich

Sweet orange (Citrus sinensis L. Osbeck) is the most horticulturally important and widely grown Citrus species in Florida and worldwide, and `Valencia' is the most important cultivar for processing. Frozen concentrate orange juice has been the primary product of the Florida and Brazilian industries, but recently there has been a strong shift to not from concentrate (NFC) product in Florida. The higher quality NFC has a greater consumer appeal, and brings a higher market price. The development of higher quality oranges with expanded maturity dates will facilitate this change and should increase the competitive ability of the Florida industry. No true sweet orange cultivars have been developed by conventional breeding due to biological impediments, and alternative methods to obtain genetic variation are being investigated, including studies of somaclonal variation. We have produced nearly 1000 somaclones of `Valencia' sweet orange using organogenesis, somatic embryogenesis, and protoplasts. Following several years of fruit evaluation, early and late maturing high quality somaclones have been identified based on juice analytical data (brix, acid, ratio, juice percentage, juice color, and lbs. solids). These clones have also performed exceptionally in taste panel evaluations comparing them with the traditional mid- and late-season cultivars. Second generation trees of the most promising clones have been propagated for further evaluation, and superior processing clones will be released to the Florida industry in the near future. An overview of this program including pilot plant juice quality data and taste panel results will be presented.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 523-533 ◽  
Author(s):  
William S. Castle ◽  
James C. Baldwin ◽  
Ronald P. Muraro ◽  
Ramon Littell

Two field experiments with ‘Valencia’ sweet orange [Citrus sinensis (L.) Osb.] trees propagated on 12 rootstocks were conducted in commercial orchards. The objectives were to compare rootstock horticultural performance between two locations with soils representative of the Central Florida Ridge (AP) and coastal flatwoods (I), the major citrus-growing regions in Florida, and to see if financial analysis would provide an improved basis for interpreting rootstock performance. The randomized complete-block trials involved six-tree plots replicated eight or 10 times at planting densities of 358 trees (AP) or 252 trees (I)/ha, respectively. Tree growth and survival, yield, and juice quality were measured for 15 years. When losses occurred, trees were replaced annually with another one on the same rootstock. The data of seven rootstocks were subjected to a financial interpretation of three scenarios: tree loss and tree loss with or without tree replacement using the discounted cash flow and internal rate of return methods at a 15% rate. At the flatwoods location, when differences among replications became apparent on several rootstocks, soil data were collected to study its possible association to tree performance; also in this trial, 400-kg fruit samples were differentially harvested in 2 successive years from mature trees on each of five commercial rootstocks when the juice soluble solids/acid ratio was near 15. The juice was extracted, pasteurized, and evaluated for flavor by an experienced taste panel. The horticultural data obtained for trees on specific well-studied rootstocks [Volkamer (C. volkameriana Ten. & Pasq.)] and rough (C. jambhiri Lush.) lemons, Carrizo citrange [C. sinensis × Poncirus trifoliata (L.)], sour orange [C. aurantium (L.)], Cleopatra mandarin (C. reshni Hort. ex Tan.), trifoliate orange (P. trifoliata), a selection of sweet orange (C. sinensis), and Swingle citrumelo (C. paradisi Macf. × P. trifoliata) at both locations were typical of their well-documented performance in Florida and elsewhere. Tree losses were virtually only from citrus blight and ranged from none (sour orange) to greater than 50% (Volkamer and rough lemons) at both locations, although tree loss began later at the Central Florida location. ‘Valencia’ cuttings (only at the flatwoods site) were long-lived and cropped well for their smaller size compared with the budded trees. Taste panelists were not able to distinguish differences over two seasons among pasteurized ‘Valencia’ juices produced from trees on different rootstocks and normalized by soluble solids/acid ratio. Yield and planting density were the main factors affecting financial outcome; also, in the highly variable soils of the coastal flatwoods, trees growing in sites with greater depth to an argillic layer had 30% to 200% higher yields. Trees on Volkamer lemon had only ≈50% survival at both locations but had the highest ($7,338/ha I) or one of the highest cash flows ($13,464/ha AP) as compared with one of the commercial standards, Carrizo citrange ($6,928 I; $16,826 AP), which had only ≈25% tree loss. Inclusion of financial analysis, with certain limitations, was concluded to considerably improve rootstock selection decisions compared with selection based only on horticultural data.


Sign in / Sign up

Export Citation Format

Share Document