scholarly journals Implementation of Intelligent Controlling Mechanism to Improve Conversion Efficiency of Solar PV Module

Author(s):  
Kakarla Deepti

The research article aims at an intelligent control method to improve conversion efficiency of solar photovoltaic module by tracking maximum operating point irrespective of variations in temperature and irradiance. A novel hybrid maximum power point based on learning automata is proposed. The algorithm works in two stages, first the learning automata detects the temperature and irradiation of light incidenting on PV module, second it identifies the zone of operation and adjusts the duty cycle of DC-DC converter. This implementation is done by designing the learning automata using artificial neural network and the adjustment of duty cycle is implemented with fuzzy logic controller. The design is verified using matlab/simulink environment.

2021 ◽  
Vol 13 (11) ◽  
pp. 6364
Author(s):  
June Raymond L. Mariano ◽  
Yun-Chuan Lin ◽  
Mingyu Liao ◽  
Herchang Ay

Photovoltaic (PV) systems directly convert solar energy into electricity and researchers are taking into consideration the design of photovoltaic cell interconnections to form a photovoltaic module that maximizes solar irradiance. The purpose of this study is to evaluate the cell spacing effect of light diffusion on output power. In this work, the light absorption of solar PV cells in a module with three different cell spacings was studied. An optical engineering software program was used to analyze the reflecting light on the backsheet of the solar PV module towards the solar cell with varied internal cell spacing of 2 mm, 5 mm, and 8 mm. Then, assessments were performed under standard test conditions to investigate the power output of the PV modules. The results of the study show that the module with an internal cell spacing of 8 mm generated more power than 5 mm and 2 mm. Conversely, internal cell spacing from 2 mm to 5 mm revealed a greater increase of power output on the solar PV module compared to 5 mm to 8 mm. Furthermore, based on the simulation and experiment, internal cell spacing variation showed that the power output of a solar PV module can increase its potential to produce more power from the diffuse reflectance of light.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


Solar photovoltaic (PV) systems are gaining importance increasingly as it directly converts solar radiation into electrical energy which is renewable and environment friendly. Where it has a numerous advantage, some disadvantages are also there like its dependency on environmental conditions. The power developed by solar panel decreases if it does not get uniform radiation. Sometimes due to nearby buildings, passing clouds etc. PV module might be partially shaded because of which power output of solar panel may get decrease this is called partial shading conditions. It causes significant reduction in the system power output. To overcome this, maximum power point-tracking under partial shading condition by continuous duty cycle variation schemes have been proposed, in which dc–dc boost converters are connected to PV module to enable maximum power extraction. In this paper a new method of Duty Sweep Maximum Power Point Tracking (DSMPPT) has been implanted, which is capable of tracking the Global Maximum Power Point (GMPP) in the presence of other local maxima. The proposed scheme tracks Maximum Power Point (MPP) by continuous variation of converter’s duty cycle without the use of costly components such as signal converters and microprocessors thereby increasing the compactness of the system.


Author(s):  
Chandramouli A ◽  
Arulmurugan R ◽  
Sivachidambaranathan

In this paper guides in the fuzzy logic and Neural network variable step size Incremental conductance maximum power point tracking controller were analyzed as well suggested on further work. Firstly, the Fuzzy Logic Control (FLC) controller based hardware system derived paper were discussed followed by Neural Network (NN) based VSS Inc-Cond were discussed in the second half. In the first paper derived simple FLC I.e short, medium and long distance were considered to derive the 25 rules. The input of FLC are current and voltage, the output of FLC is duty cycle or D. The duty cycle apply into variable step Inc-conductance method to find the optimal point of the PV system. Further discussed experimental block diagram of FLC-Inc-Cond system. At the end of the paper authors compared various hardware to show tabulations. In the second half, initially discussed conventional Inc-Cond, followed by general Fuzzy logic controller were discussed. Further author derived VSS Inc-Cond based NN MPPT were developed on Matlab simulink. The output of FLC-Inc Cond as well NN based MPPT is great performance when compare to conventional system.


Author(s):  
Meryem Oudda ◽  
Abdeldjebar Hazzab

<span lang="EN-US">In this work, a fuzzy logic controller is used to control the output voltage of a photovoltaic system with a DC-DC converter; type Single Ended Primary Inductor Converter (SEPIC). The system is designed for 210 W solar PV (SCHOTT 210) panel and to feed an average demand of 78 W. This system includes solar panels, SEPIC converter and fuzzy logic controller. The SEPIC converter provides a constant DC bus voltage and its duty cycle controlled by the fuzzy logic controller which is needed to improve PV panel’s utilization efficiency. A fuzzy logic controller (FLC) is also used to generate the PWM signal for the SEPIC converter. </span>


2014 ◽  
Vol 33 ◽  
pp. 602-612 ◽  
Author(s):  
Ravinder Kumar Kharb ◽  
S.L. Shimi ◽  
S. Chatterji ◽  
Md. Fahim Ansari

2014 ◽  
Vol 953-954 ◽  
pp. 95-98
Author(s):  
Mohd Najib Mohd Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim

This paper presents a simulation and laboratory test of Photovoltaic (PV) module incorporated with Positive Output (PO) Buck-Boost Converter for harnessing maximum energy from the solar PV module. The main intention is to invent a system which can harvest maximum power point (MPP) energy of the PV system in string-connection. The model-based design of the controller and maximum power point tracking (MPPT) algorithm for the system were implemented using MATLAB SIMULINK software. For laboratory execution, the digital microcontroller of dsPIC30F digital signal controller (DSC) was used to control the prototype of PO buck-boost converter. The code generation via MPLAB Integrated Development Environment (IDE) from model-based design was embedded into the dsPIC30F using the SKds40A target board and PICkit 3 circuit debugger. The system was successfully simulated and verified by simulation and laboratory evaluations. A physical two PV module of PV-MF120EC3 Mitsubishi Electric is modeled in string connection to represent a mismatch module. While in laboratory process, a string-connection of 10W and 5W PV module is implemented for the mismatch module condition.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Abdoulatif Bonkaney ◽  
Saïdou Madougou ◽  
Rabani Adamou

The sensitivity of monocrystalline solar module towards dust accumulation and cloud cover is investigated from May to August 2015 for Niamey’s environment. Two solar modules with the same characteristics have been used to assess the impacts of the dust on the solar PV module. One of the modules is being cleaned every morning and the second one was used for monitoring the effect of dust accumulation onto the surface of the unclean module for May and June. Results show that dust accumulation has a great effect on decreasing the daily energy yield of the unclean module. But this effect is a long-term effect. For the cloud cover, the effect is immediate. It was estimated that exposing the module into the environment in 23 days in June 2015 has reduced the daily energy yield by 15.29%. This limitation makes solar PV an unreliable source of power for remote devices and thus strongly suggests the challenges of cleaning the module’s surface regularly.


2021 ◽  
Vol 13 (6) ◽  
pp. 3144
Author(s):  
Kanagaraj N.

In this paper, the design and performance investigation of the hybrid photovoltaic–thermoelectric generator (PV–TEG) system with an enhanced fractional order fuzzy logic controller (FOFLC)-based maximum power point tracking (MPPT) technique is presented. A control strategy of the variable incremental conduction (INC) method is employed using FOFLC for the MPPT control technique to efficiently harvest the maximum power from the PV module. The fractional factor α used in the MPPT control algorithm is a supporting fuzzy logic controller (FLC) for the accurate tracking of the maximum power point (MPP) and to maintain the constant output after reaching the MPP. In the proposed system configuration, the TEG is mounted with the PV panel for generating the extra electrical power using the waste heat energy produced on the PV panel due to the incident solar irradiation. The PV and TEG are connected electrically in series to increase output voltage level and thereby improve the power output. The hybrid energy module has better energy conversion efficiency when compared to the standalone PV array. The performance of the proposed MPPT technique is studied for the PV–TEG hybrid energy module under various thermal and electrical operating conditions using a MATLAB software-based simulation. The results of the FOFLC-based MPPT technique are compared with the conventional perturb and observe (P&O) and FLC-based P&O methods. The proposed MPPT technique confirms its effectiveness in extracting the maximum power in terms of speed and accuracy. Moreover, the PV and TEG combined system provides higher energy efficiency than the individual PV module.


Sign in / Sign up

Export Citation Format

Share Document