scholarly journals Impacts of Cloud Cover and Dust on the Performance of Photovoltaic Module in Niamey

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Abdoulatif Bonkaney ◽  
Saïdou Madougou ◽  
Rabani Adamou

The sensitivity of monocrystalline solar module towards dust accumulation and cloud cover is investigated from May to August 2015 for Niamey’s environment. Two solar modules with the same characteristics have been used to assess the impacts of the dust on the solar PV module. One of the modules is being cleaned every morning and the second one was used for monitoring the effect of dust accumulation onto the surface of the unclean module for May and June. Results show that dust accumulation has a great effect on decreasing the daily energy yield of the unclean module. But this effect is a long-term effect. For the cloud cover, the effect is immediate. It was estimated that exposing the module into the environment in 23 days in June 2015 has reduced the daily energy yield by 15.29%. This limitation makes solar PV an unreliable source of power for remote devices and thus strongly suggests the challenges of cleaning the module’s surface regularly.

2019 ◽  
Vol 25 (10) ◽  
pp. 1-19
Author(s):  
Mena Safaa Mohammed ◽  
Emad Talib Hashim

Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for different weather data (solar irradiance and ambient temperature) that is gathered from October 2017 to April 2018 in the city of Baghdad. The collected data is recorded for the entire months during the time which is limited between 8:00 AM and 1:00 PM. This work demonstrates that the change in a cell temperature is directly proportional with the PV module current, while it is inversely proportional with the PV module voltage. Additionally, the output power of a PV module increases with decreasing the solar module temperature. Furthermore, the Simulink block diagram is used to evaluate the influence of weather factors on the PV module temperature by connecting to the MATLAB code. The best value from the results of this work was in March when the solar irradiance was equal to 1000 W/m2 and the results were: Isc,exp=3.015, Isc,mod=3.25 , RE=7.79 and Voc,exp=19.67 ,Voc,mod=19.9 ,RE=1.1


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


2021 ◽  
Vol 13 (6) ◽  
pp. 3364
Author(s):  
Amr Zeedan ◽  
Abdulaziz Barakeh ◽  
Khaled Al-Fakhroo ◽  
Farid Touati ◽  
Antonio S. P. Gonzales

Soiling losses of photovoltaic (PV) panels due to dust lead to a significant decrease in solar energy yield and result in economic losses; this hence poses critical challenges to the viability of PV in smart grid systems. In this paper, these losses are quantified under Qatar’s harsh environment. This quantification is based on experimental data from long-term measurements of various climatic parameters and the output power of PV panels located in Qatar University’s Solar facility in Doha, Qatar, using a customized measurement and monitoring setup. A data processing algorithm was deliberately developed and applied, which aimed to correlate output power to ambient dust density in the vicinity of PV panels. It was found that, without cleaning, soiling reduced the output power by 43% after six months of exposure to an average ambient dust density of 0.7 mg/m3. The power and economic loss that would result from this power reduction for Qatar’s ongoing solar PV projects has also been estimated. For example, for the Al-Kharasaah project power plant, similar soiling loss would result in about a 10% power decrease after six months for typical ranges of dust density in Qatar’s environment; this, in turn, would result in an 11,000 QAR/h financial loss. This would pose a pressing need to mitigate soiling effects in PV power plants.


2021 ◽  
Vol 13 (11) ◽  
pp. 6364
Author(s):  
June Raymond L. Mariano ◽  
Yun-Chuan Lin ◽  
Mingyu Liao ◽  
Herchang Ay

Photovoltaic (PV) systems directly convert solar energy into electricity and researchers are taking into consideration the design of photovoltaic cell interconnections to form a photovoltaic module that maximizes solar irradiance. The purpose of this study is to evaluate the cell spacing effect of light diffusion on output power. In this work, the light absorption of solar PV cells in a module with three different cell spacings was studied. An optical engineering software program was used to analyze the reflecting light on the backsheet of the solar PV module towards the solar cell with varied internal cell spacing of 2 mm, 5 mm, and 8 mm. Then, assessments were performed under standard test conditions to investigate the power output of the PV modules. The results of the study show that the module with an internal cell spacing of 8 mm generated more power than 5 mm and 2 mm. Conversely, internal cell spacing from 2 mm to 5 mm revealed a greater increase of power output on the solar PV module compared to 5 mm to 8 mm. Furthermore, based on the simulation and experiment, internal cell spacing variation showed that the power output of a solar PV module can increase its potential to produce more power from the diffuse reflectance of light.


2020 ◽  
pp. 90-102
Author(s):  
Trina Som ◽  
A. Sharma ◽  
D. Thakur

In the present study, performance analyses of a solar module are made through the optimal variation of solar tilt angle, pertaining to the maximum generation of solar energy. The work has been carried out for a particular location at Tripura, in India, considering three different cases on an annual basis. An intelligent behavioural based algorithm, known as artificial bee algorithm (ABC), has been implemented for finding the optimal orientation of solar angle in analysing the performance. The result shows marginal differences are obtained in producing yearly maximum solar energy for different orientations of the PV module. It has been observed that the maximum average solar energy is obtained for the case where continuous adjustment is made by rotating the plane about the horizontal east-west axis within 20° to 30° tilt angle. The computed maximum and minimum of the monthly average efficiency is 10.9% and 8.7%, respectively. Further, a comparative study has been performed in generating average solar energy through optimal tilt angle by the implementation of Perturb & Observe method (P&O). The monthly average solar power computed by P&O method resulted better in a range of 2% to 15% in comparison to that obtained by ABC. While on the other hand, the efficiency computed by ABC algorithm was 15% to 19% better than that evaluated by P&O method for all the cases studied in the present work.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


Author(s):  
Rajendra. G, Sai Ranjith Reddy.K and Ganesh Kumar. I.R S. Yoga Sainath Reddy, Jagannath Reddy

The solar photovoltaic system generates both thermal energy and electrical energy by utilizing solar energy. In this paper an experimental attempt has made for calculating energy output as well as exergy output of solar PV panel installed at R.L.J.I.T. Bangalore. Energy and exergy analysis was performed by using first and second law of thermodynamics to evaluate energy and exergy. The framework involved in this process are ambient temperature, overall heat transfer, open-circuit voltage, short-circuit current, fill factor, solar radiations etc. It is predicted that temperature of pv solar module has most effect on the efficiencies. By the help of water or air the heat can be removed to improve both energy and exergy efficiencies.


Author(s):  
Nadia Bouaziz ◽  
Arezki Benfdila ◽  
Ahcene Lakhlef

The present paper deals with the development of a simulation model for predicting the performances of a solar photovoltaic (PV) system operating under current meteorological conditions at the site location. The proposed model is based on the cell equivalent circuit including a photocurrent source, a diode, a series and shunt resistances. Mathematical expressions developed for modeling the PV generator performances are based on current-voltage characteristic of the considered modules. The developed model allows the prediction of PV cell (module) behavior under different physical and environmental parameters. The model can be extended to extract physical parameters for a given solar PV module as a function of temperature and solar irradiation. A typical 260 W solar panel developed by LG Company was used for model evaluation using Newton-Raphson approach under MATLAB environment in order to analyze its behavior under actual operating conditions. Comparison of our results with data taken from the manufacturer’s datasheet shows good agreement and confirms the validity of our model. Hence, the proposed approach can be an alternative to extract different parameters of any PV module to study and predict its performances.


2016 ◽  
Vol 27 (1) ◽  
pp. 28 ◽  
Author(s):  
N. Marc-Alain Mutombo ◽  
Freddie Inambao ◽  
Glen Bright

The conversion of solar irradiance into electricity by a photovoltaic module (PV) is 6– 7% of the incoming energy from the sun depending on the type of technology and the environmental parameters. More than 80% of incoming energy from the sun is reflected or absorbed by the solar module. The fraction of energy absorbed increases with solar cell temperature and the cells’ efficiency drops as a consequence. The efficiency of a PV module is improved by combining a PV module and a thermal collector in one unit, resulting in a hybrid photovoltaic and thermal collector (PV/T). The purpose of this paper is to present the behavior a thermosyphon hybrid PV/T when exposed to variations of environmental parameters and to demonstrate the advantage of cooling photovoltaic modules with water using a rectangular channel profile for the thermal collector. A single glazed flat-box absorber PV/T module was designed, its behavior for different environmental parameters tested, the numerical model developed, and the simulation for particular days for Durban weather run. The simulation result showed that the overall efficiency of the PV/T module was 38.7% against 14.6% for a standard PV module while the water temperature in the storage tank reached 37.1 °C. This is a great encouragement to the marketing of the PV/T technology in South Africa particularly during summer, and specifically in areas where the average annual solar irradiance is more than 4.70 kWh/m²/day.


Sign in / Sign up

Export Citation Format

Share Document