scholarly journals Development of Electric Vehicle Charging Infrastructure Based on Population

Author(s):  
S Mani ◽  
R Raguraj ◽  
R Harikaran ◽  
S Hariramselvakanth ◽  
K.S. Gowthaman

This research investigates electric vehicle(EV) charging behavior and aims to find the best method for its prediction in order to optimize the EV charging station(CS). This paper discusses several commonly used machine learning algorithm or k-Nearest Neighbor(k-NN) to predict charging station based on population data records. According to the objective of the charging station planning, use the concept of group to do clustering evolution search. Hence the results of k-NN algorithm achieved through MATLAB software. Based on the population, the initial time location of the charging station will be randomly considered in Manapparai, Lalgudi, Vaiyampatti, Thiruverumbur in Trichy based on population.

Author(s):  
Csaba Csiszár

To develop, plan, implement and operate the electric road mobility system, especially the charging infrastructure, the existing and potential demand must be revealed for several time horizons. Accordingly, the aim of the research was to elaborate a calculation method for electric vehicle charging demand and to determine the public charging infrastructure locating principles. The research questions were: how many and what kind of vehicles will be used; where, when and how long they will be charged; what aspects and how influence the charging station deployment. The number of charging points to be installed, the energy demand and capacity management parameters can be also determined using the revealed correlations. The calculation method is adaptable to any territorial unit and any time horizon. It is the basis of charging station locating methods, which is demonstrated through two novel geoinformatics applications.


2021 ◽  
Vol 13 (12) ◽  
pp. 6590
Author(s):  
Scott Dwyer ◽  
Claudine Moutou ◽  
Kriti Nagrath ◽  
Joseph Wyndham ◽  
Lawrence McIntosh ◽  
...  

Electric vehicle (EV) adoption is growing worldwide with increasing market pull from consumers and market push from manufacturers of vehicles and charging equipment, as well as others in the supply chain. Governments have begun developing policies to support EV uptake and local governments, in particular, are examining what role they should play. In Australia, a large country with low population density, EV uptake has been slower in comparison to other similar economies. This paper discusses the status of EV charging infrastructure deployment in Australia with regards to local governments, by considering the extent to which they are relied upon for the deployment of such technology and what motivates them to act. It also covers the work undertaken by the authors with one local government in developing an EV charging infrastructure business model that will help the local community adopt and benefit from EVs. An applied use of the business canvas methodology adapted to suit local government interests is presented to assess the risks and benefits that different business models offer. The paper offers insights into the strategic and pragmatic responsibilities local governments balance in seeking to expand the EV charging infrastructure in their jurisdiction.


Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


2021 ◽  
Author(s):  
Manjush Ganiger ◽  
Maneesh Pandey ◽  
Rahul Wagh ◽  
Rakesh Govindasamy

Abstract Transition towards electric vehicles (EV) is the key enabler for fighting against climate change as well as for sustainable future. However, to build more confidence on EV transition, availability of charging infrastructure is key. One of the important criterions for vehicle charging station is to have a stable electricity source that can meet varying charging demand. The paper attempts to explore the eco-system of self-sustainable and quasi-renewable charging infrastructure. This paper outlines a circular economy model for EV charging station (EVCS) using a gas turbine from the Baker Hughes™ portfolio. The proposed solution includes Solid Oxide Electrolyzer and a carbon capture unit, integrated to the gas turbine. This integrated system is decarbonized using the hydrogen generated by the electrolysis unit. Proposed solution on EVCS can charge about 1500 EVs in half a day of operation (50% power split). Solution is lucrative and has attractive return on investment. The solution here is having high power density, compared to the actual renewable energy dependent charging stations. The solution is flexible to incorporate Power-to-X conversions. Modular nature of the solution makes it easy to implement in city limits as well as in remote locations, along the highways, where grid availability can be challenging.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 25 ◽  
Author(s):  
Hassan S. Hayajneh ◽  
Xuewei Zhang

The optimal planning of electric vehicle charging infrastructure has attracted extensive research interest in recent years. Most of the optimization problems were formulated by assuming that the configurations will be fixed at the optimal solution while overlooking the fact that the charging stations and the electric vehicles are “evolving” over time and have mutual impacts. On the other hand, little attention has been paid to evaluate the performance of the solutions in such a dynamic environment. Motivated by these gaps, this work develops a simulation model that captures the interactions between charging station configurations and electric vehicle population (and the preference of electric vehicles when choosing charging station). This modeling framework is then implemented to evaluate the performance of planned charging infrastructure in providing services to electric vehicles. Two indicators are calculated, i.e., usage rate and rejection rate. The former measures the “waste” due to abundant facilities installed; the latter measures the inadequacy of planned facilities, especially when the electric vehicle population is larger. The simulation results presented in this work validate the model and show the potential of the model not only to evaluate designs but also to be used for optimal planning in subsequent works.


2021 ◽  
Author(s):  
Tran Van Hung

Electric vehicles have become a trend as a replacement to gasoline-powered vehicles and will be a sustainable substitution to conventional vehicles. As the number of electric vehicles in cities increases, the charging demand has surged. The optimal location of the charging station plays an important role in the electric vehicle transit system. This chapter discusses the planning of electric vehicle charging infrastructure for urban. The purpose of this work develops an electric vehicle fast-charging facility planning model by considering battery degradation and vehicle heterogeneity in driving range, and considering various influencing factors such as traffic conditions, user charging costs, daily travel, charging behavior, and distribution network constraints. This work identifies optimal fast-charging stations to minimize the total cost of the transit system for deploying fast-charging networks. Besides, this chapter also analyzes some optimization modeling approach for the fast charging location planning, and point out future research directions.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


Author(s):  
Omar Isaac Asensio ◽  
Daniel J Marchetto ◽  
Sooji Ha ◽  
Sameer Dharur

Mobile applications have become widely popular for their ability to access real-time information. In electric vehicle (EV) mobility, these applications are used by drivers to locate charging stations in public spaces, pay for charging transactions, and engage with other users. This activity generates a rich source of data about charging infrastructure and behavior. However, an increasing share of this data is stored as unstructured text—inhibiting our ability to interpret behavior in real-time. In this article, we implement recent transformer-based deep learning algorithms, BERT and XLnet, that have been tailored to automatically classify short user reviews about EV charging experiences. We achieve classification results with a mean accuracy of over 91% and a mean F1 score of over 0.81 allowing for more precise detection of topic categories, even in the presence of highly imbalanced data. Using these classification algorithms as a pre-processing step, we analyze a U.S. national dataset with econometric methods to discover the dominant topics of discourse in charging infrastructure. After adjusting for station characteristics and other factors, we find that the functionality of a charging station is the dominant topic among EV drivers and is more likely to be discussed at points-of-interest with negative user experiences.


2012 ◽  
Vol 608-609 ◽  
pp. 1553-1559
Author(s):  
Wu Wu Tang ◽  
Yu Ming Wu ◽  
Jian Qin

Charging infrastructure is the fundamental conditions of electric vehicles(EV)’s application and dissemination, and advanced charging standards can guide and regulate the harmonious development of EV and infrastructure. In this paper, plenty of and latest EV charging standards were collected at home and abroad, which were compared in different classifications, then the standards differences were analyzed in term of relative merits to provide reference for the future development of EV charging standards in China.


2020 ◽  
pp. 158-194
Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


Sign in / Sign up

Export Citation Format

Share Document