scholarly journals Smashing the Implementation Records of AES S-box

Author(s):  
Arash Reyhani-Masoleh ◽  
Mostafa Taha ◽  
Doaa Ashmawy

Canright S-box has been known as the most compact S-box design since its introduction back in CHES’05. Boyar-Peralta proposed logic-minimization heuristics that could reduce the gate count of Canright S-box from 120 gates to 113 gates, however synthesis results did not reflect much improvement. In CHES’15, Ueno et al. proposed an S-box that has a slightly higher area, but significantly faster than the previous designs, hence it was the most efficient (measured by area×delay) S-box implementation to date. In this paper, we propose two new designs for the AES S-box. One design has a smaller implementation area than both Canright and the 113-gate S-boxes. Hence, our first design is the smallest AES S-box to date, breaking the 13 years implementation record of Canright. The second design is faster and smaller than the Ueno S-box. Hence, our second design is both the fastest and the most efficient S-box design to date. While doing so, we also propose new logicminimization heuristics that outperform the previous algorithms of Boyar-Peralta. Finally, we conduct an exhaustive evaluation of each and every block in the S-box circuit, using both structural and behavioral HDL modeling, to reach the optimum synergy between theoretical algorithms and technology-supported optimization tools. We show that involving the technology-supported CAD tools in the analysis results in several counter-intuitive results.

Author(s):  
E. Faghand ◽  
S. Karimian ◽  
E. Mehrshahi ◽  
N. Karimian

Abstract A new simple computational tool is proposed for the synthesis of multi-section coupled-line filters based on combined modified planar circuit method (MPCM) and transmission line method (TLM) analysis, referred to as MPCM-TLM. Due to its fundamentally simple architecture, the presented tool offers significantly faster optimization of coupled-line filters – for exactly the same initial simulation set-up – than other costly commercially-available tools, giving equally reliable results. Validity and accuracy of the proposed tool have been verified through the design of 3rd, 5th, and 7th order coupled-line filters and comparative analysis between results obtained from the proposed approach and the high-frequency structure simulator. A remarkable 99% time reduction in the analysis is recorded in the case of 7th order filter using the proposed tool, for almost identical results to HFSS. Therefore, it can be confidently claimed that the proposed technique can be used as a reliable alternative to existing complex, costly, processor-intensive CAD tools.


1984 ◽  
Vol 14 (4) ◽  
pp. 285-290
Author(s):  
Alfred A. Schwartz
Keyword(s):  

Author(s):  
David G. Ullman ◽  
Thomas G. Dietterich ◽  
Larry A. Stauffer

This paper describes the task/episode accumulation model (TEA model) of non-routine mechanical design, which was developed after detailed analysis of the audio and video protocols of five mechanical designers. The model is able to explain the behavior of designers at a much finer level of detail than previous models. The key features of the model are (a) the design is constructed by incrementally refining and patching an initial conceptual design, (b) design alternatives are not considered outside the boundaries of design episodes (which are short stretches of problem solving aimed at specific goals), (c) the design process is controlled locally, primarily at the level of individual episodes. Among the implications of the model are the following: (a) CAD tools should be extended to represent the state of the design at more abstract levels, (b) CAD tools should help the designer manage constraints, and (c) CAD tools should be designed to give cognitive support to the designer.


2021 ◽  
Vol 12 (01) ◽  
pp. 182-189
Author(s):  
Adam Wright ◽  
Skye Aaron ◽  
Allison B. McCoy ◽  
Robert El-Kareh ◽  
Daniel Fort ◽  
...  

Abstract Objective Clinical decision support (CDS) can contribute to quality and safety. Prior work has shown that errors in CDS systems are common and can lead to unintended consequences. Many CDS systems use Boolean logic, which can be difficult for CDS analysts to specify accurately. We set out to determine the prevalence of certain types of Boolean logic errors in CDS statements. Methods Nine health care organizations extracted Boolean logic statements from their Epic electronic health record (EHR). We developed an open-source software tool, which implemented the Espresso logic minimization algorithm, to identify three classes of logic errors. Results Participating organizations submitted 260,698 logic statements, of which 44,890 were minimized by Espresso. We found errors in 209 of them. Every participating organization had at least two errors, and all organizations reported that they would act on the feedback. Discussion An automated algorithm can readily detect specific categories of Boolean CDS logic errors. These errors represent a minority of CDS errors, but very likely require correction to avoid patient safety issues. This process found only a few errors at each site, but the problem appears to be widespread, affecting all participating organizations. Conclusion Both CDS implementers and EHR vendors should consider implementing similar algorithms as part of the CDS authoring process to reduce the number of errors in their CDS interventions.


Sign in / Sign up

Export Citation Format

Share Document