Influence of nutrient availability and Melilotus alba seed exudate and root extract on biofilm formation by Bacillus simplex

2020 ◽  
Author(s):  
Nancy Fujishige
2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Erin B. Purcell ◽  
Robert W. McKee ◽  
David S. Courson ◽  
Elizabeth M. Garrett ◽  
Shonna M. McBride ◽  
...  

ABSTRACT The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.


mBio ◽  
2021 ◽  
Author(s):  
Julia L. E. Willett ◽  
Jennifer L. Dale ◽  
Lucy M. Kwiatkowski ◽  
Jennifer L. Powers ◽  
Michelle L. Korir ◽  
...  

E. faecalis is an opportunistic pathogen and a leading cause of hospital-acquired infections, in part due to its ability to form biofilms. A complete understanding of the genes required for E. faecalis biofilm formation as well as specific features of biofilm morphology related to nutrient availability and growth conditions is crucial for understanding how E. faecalis biofilm-associated infections develop and resist treatment in patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Amreen Bashir ◽  
Ansar Azeem ◽  
Yvonne Stedman ◽  
Anthony C. Hilton

Environmentally persistentSalmonellain the pet food factory environment has been described, with biofilm formation suggested as a candidate mechanism contributing to their persistence. In this study the ability of a panel ofSalmonellaisolates from factory, clinical, and veterinary sources was investigated for their ability to form biofilms at 24 and 48 hours. The effect of nutrient availability and incubation time on biofilm formation was investigated using full strength and diluted 1/20 TSB media at 37°C, 25°C, 15°C, and 10°C. Results highlighted that all theSalmonellaisolates were able to form biofilms in both nutrient conditions and this was highly correlated with temperature. At 25°C, biofilm formation was enhanced in diluted 1/20 TSB and increased incubation time (48h) (p= <0.001). However, this was not observed at 10°C, 15°C, or 37°C. None of the factory isolates demonstrated enhanced biofilm formation in comparison to serotype-matched isolates from veterinary and clinical sources.Salmonella entericaSenftenberg 775W was the strongest biofilm former at 15°C, 25°C, and 37°C in all the conditions tested (p=<0.05). Biofilm formation is an important mechanism of environmental persistence in the food manufacturing environment; however, there is no evidence of an enhanced biofilm-producing phenotype in factory persistent strains.


2004 ◽  
Vol 67 (10) ◽  
pp. 2123-2131 ◽  
Author(s):  
JEE-HOON RYU ◽  
HOIKYUNG KIM ◽  
LARRY R. BEUCHAT

The influence of exopolysaccharide (EPS) production, nutrient availability, and temperature on attachment and biofilm formation by Escherichia coli O157:H7 strains ATCC 43895 (wild type) and 43895-EPS (extensive EPS-producing mutant) on stainless steel coupons (SSCs) was investigated. Cells grown on heated lettuce juice agar and modified tryptic soy agar were suspended in phosphate-buffered saline (PBS). SSCs were immersed in the cell suspension (109 CFU/ml) at 4°C for 24 h. Biofilm formation by cells attached to SSCs as affected by immersing in 10% tryptic soy broth (TSB), lettuce juice broth (LJB), and minimal salts broth (MSB) at 12 and 22°C was studied. A significantly lower number of strain 43895-EPS cells, compared to strain ATCC 43895 cells, attached to SSCs during a 24-h incubation (4°C) period in PBS suspension. Neither strain formed a biofilm on SSCs subsequently immersed in 10% TSB or LJB, but both strains formed biofilms in MSB. Populations of attached cells and planktonic cells of strain ATCC 43895 gradually decreased during incubation for 6 days in LJB at 22°C, but populations of strain 43895-EPS remained constant for 6 days at 22°C, indicating that the EPS-producing mutant, compared to the wild-type strain, has a higher tolerance to the low-nutrient environment presented by LJB. It is concluded that EPS production by E. coli O157:H7 inhibits attachment to SSCs and that reduced nutrient availability enhances biofilm formation. Biofilms formed under conditions favorable for EPS production may protect E. coli O157:H7 against sanitizers used to decontaminate lettuce and produce processing environments. Studies are under way to test this hypothesis.


2012 ◽  
Vol 84 (1) ◽  
pp. 17-35 ◽  
Author(s):  
Maureen K. Thomason ◽  
Fanette Fontaine ◽  
Nicholas De Lay ◽  
Gisela Storz

2006 ◽  
Vol 72 (9) ◽  
pp. 5846-5856 ◽  
Author(s):  
Hoikyung Kim ◽  
Jee-Hoon Ryu ◽  
Larry R. Beuchat

ABSTRACT Enterobacter sakazakii has been reported to form biofilms, but environmental conditions affecting attachment to and biofilm formation on abiotic surfaces have not been described. We did a study to determine the effects of temperature and nutrient availability on attachment and biofilm formation by E. sakazakii on stainless steel and enteral feeding tubes. Five strains grown to stationary phase in tryptic soy broth (TSB), infant formula broth (IFB), or lettuce juice broth (LJB) at 12 and 25�C were examined for the extent to which they attach to these materials. Higher populations attached at 25�C than at 12�C. Stainless steel coupons and enteral feeding tubes were immersed for 24 h at 4�C in phosphate-buffered saline suspensions (7 log CFU/ml) to facilitate the attachment of 5.33 to 5.51 and 5.03 to 5.12 log CFU/cm2, respectively, before they were immersed in TSB, IFB, or LJB, followed by incubation at 12 or 25�C for up to 10 days. Biofilms were not produced at 12�C. The number of cells of test strains increased by 1.42 to 1.67 log CFU/cm2 and 1.16 to 1.31 log CFU/cm2 in biofilms formed on stainless steel and feeding tubes, respectively, immersed in IFB at 25�C; biofilms were not formed on TSB and LJB at 25�C, indicating that nutrient availability plays a major role in processes leading to biofilm formation on the surfaces of these inert materials. These observations emphasize the importance of temperature control in reconstituted infant formula preparation and storage areas in preventing attachment and biofilm formation by E. sakazakii.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaobin Xu ◽  
Sabina Islam ◽  
Thomas K. Wood ◽  
Zuyi Huang

The availability of nutrient components in the environment was identified as a critical regulator of virulence and biofilm formation inPseudomonas aeruginosa. This work proposes the first systems-biology approach to quantify microbial biofilm formation upon the change of nutrient availability in the environment. Specifically, the change of fluxes of metabolic reactions that were positively associated withP. aeruginosabiofilm formation was used to monitor the trend forP. aeruginosato form a biofilm. The uptake rates of nutrient components were changed according to the change of the nutrient availability. We found that adding each of the eleven amino acids (Arg, Tyr, Phe, His, Iso, Orn, Pro, Glu, Leu, Val, and Asp) to minimal medium promotedP. aeruginosabiofilm formation. Both modeling and experimental approaches were further developed to quantifyP. aeruginosabiofilm formation for four different availability levels for each of the three ions that include ferrous ions, sulfate, and phosphate. The developed modeling approach correctly predicted the amount of biofilm formation. By comparing reaction flux change upon the change of nutrient concentrations, metabolic reactions used byP. aeruginosato regulate its biofilm formation are mainly involved in arginine metabolism, glutamate production, magnesium transport, acetate metabolism, and the TCA cycle.


2012 ◽  
Vol 65 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Qingchun Zhou ◽  
Xiaoqin Feng ◽  
Qiang Zhang ◽  
Feifei Feng ◽  
Xiaojiao Yin ◽  
...  

Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
A Sánchez-Medina ◽  
PC Stevenson ◽  
S Habtemariam ◽  
LM Peña-Rodríguez ◽  
O Corcoran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document