scholarly journals The Effect of Weighting Materials on the Rheological Properties of Iraqi and Commercial Bentonite in Direct Emulsion

2021 ◽  
Vol 54 (1F) ◽  
pp. 110-121
Author(s):  
Amel Habeeb Assi

Numerous drilling additives and materials are used continuously because they are necessary to support and give the required properties of the drilling fluid so that to ensure the stability of the borehole. This paper aspires to evaluate the rheological properties of bentonite (montmorillonite) Trefawey as an alternative to using commercial bentonite. Monitoring and evaluating of the rheological and filtration properties were prepared. This exertion aims to focus on the effect of hematite, and barite on the rheological properties of the three aforementioned bentonite types. An improvement in the rheological properties of bentonite (montmorillonite). Trefawey was observed after adding the previous heavy materials. Hematite has by some means better ability to improve rheological properties compared to other heavy materials. The emulsifying agent used was Carboxyl Methyl Cellulose (HOCH2COONA), as it has provided excellent results parallel to the lignite. The rheological properties of bentonite (montmorillonite) Trefawey are enhanced by doubling the amount of carboxyl methyl cellulose (HOCH2COONA). The results have proved that the use of weighting materials and emulsifying agent affected the rheological properties of bentonite (montmorillonite) Trefawey in a direct emulsion. The results have shown that it is more appropriate to use carboxyl methyl cellulose as an emulsifying agent to prepare a direct emulsion than bentonite (montmorillonite) Trefawey due to its excellent effect in improving the rheological properties of bentonite (montmorillonite) Trefawey. And it can be said that this effort has succeeded in studying two effects simultaneously. In other words, both heavy substances and emulsifying agent have effects on bentonite (montmorillonite) Trefawey, in order to obtain a stable emulsion and a clearer view of the behavior of Iraqi bentonite. The above effort has focused on making bentonite (montmorillonite) Trefawey suitable for the nature of geological layers such as oil shale, limestone and sandstone. This means preparing drilling fluid using bentonite (montmorillonite) Trefawey to drill the above structures. The study has concluded that it is better to use bentonite (montmorillonite) Trefawey in preparing direct oil emulsions as a stable and successful alternative of imported bentonite.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2393 ◽  
Author(s):  
Salaheldin Elkatatny

Drilling in high-pressure high-temperature (HPHT) conditions is a challenging task. The drilling fluid should be designed to provide high density and stable rheological properties. Barite is the most common weighting material used to adjust the required fluid density. Barite settling, or sag, is a common issue in drilling HPHT wells. Barite sagging may cause many problems such as density variations, well-control problems, stuck pipe, downhole drilling fluid losses, or induced wellbore instability. This study assesses the effect of using a new copolymer (based on styrene and acrylic monomers) on the rheological properties and the stability of an invert emulsion drilling fluid, which can be used to drill HPHT wells. The main goal is to prevent the barite sagging issue, which is common in drilling HPHT wells. A sag test was performed under static (vertical and 45° incline) and dynamic conditions in order to evaluate the copolymer’s ability to enhance the suspension properties of the drilling fluid. In addition, the effect of this copolymer on the filtration properties was performed. The obtained results showed that adding the new copolymer with 1 lb/bbl concentration has no effect on the density and electrical stability. The sag issue was eliminated by adding 1 lb/bbl of the copolymer to the invert emulsion drilling fluid at a temperature >300 °F under static and dynamic conditions. Adding the copolymer enhanced the storage modulus by 290% and the gel strength by 50%, which demonstrated the power of the new copolymer to prevent the settling of the barite particles at a higher temperature. The 1 lb/bbl copolymer’s concentration reduced the filter cake thickness by 40% at 400 °F, which indicates the prevention of barite settling at high temperature.


2014 ◽  
Vol 641-642 ◽  
pp. 447-450 ◽  
Author(s):  
Long Li ◽  
Xu Bo Yuan ◽  
Cha Ma ◽  
Rong Chao Cheng ◽  
Yu Ping Yang

A new type of humic acid acetamide FLHA was synthesized by chemical modification of humic acid with long chain fatty amine, and the effect of humic acid acetamide on the rheological properties of gas-to-liquid (GTL) based drilling fluids was investigated. The results indicated that FLHA had good capacity of filtration reduction under 150 °C. Moreover, FLHA can improve the stability of GTL-based drilling fluids. As a result, FLHA is an good fluid loss additive for GTL-based drilling fluids, and it can optimizate drilling fluid system formulation to make drilling fluids have good rheological properties, filtration properties and environmental protection function.


2020 ◽  
pp. 2953-2966
Author(s):  
Ahmed Sattar Ibrahim ◽  
Mayssaa Ali Al-Bidry

In this study, Iraqi bentonite taken from Trefawi area/ Al-Anbar region province/ Iraq, was activated to enhance its rheological and filtration properties and increase its quality by decreasing the non-clay minerals (impurities), in order to be used in Iraqi oil companies instead of commercial bentonite. Bentonite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and particle size distribution (PSD) before and after activation to show the effects on its mineral and chemical properties. The rheological properties of bentonite were enhanced by using different weights (0.4, 0.5, 0.6, 0.7 and 0.8 gm) of sodium carbonate (Na₂CO₃), whereas the filtration properties were enhanced by using different weights (0.5, 1, 1.5 gm) of high viscous-carboxy methyl cellulose (CMC-HV) and different weights (0.5, 1, 2 gm) of low viscous-carboxy methyl cellulose (CMC-LV). The results showed that the rheological properties of Iraqi bentonite were enhanced and met the specifications of the American Petroleum Institute (API) when 0.7 gm of Na₂CO₃ was added. The filtration properties were also enhanced and satisfied API specification when 0.5 gm of CMC-HV and 2 gm of CMC-LV were added. Therefore, Iraqi bentonite has the potential to be used as drilling fluid in oil fields.


2021 ◽  
Author(s):  
Renzhou Meng ◽  
Chengwen Wang ◽  
Xiliang Dong ◽  
Chao Xiong

Abstract Oil-based drilling fluid (OBDF) is an important means for offshore drilling, but it would affect the cementing quality. Nanoemulsions shows potential for OBDF removal, but how to prepare nanoemulsion meeting the engineering requirement is lack of good understanding. Moreover, nanoemulsions usually behave badly under low/high temperature, which would restrict the application. Revealing removal mechanisms of nanoemulsion and improving nanoemulsion stability at different temperature are of great significance. The nanoemulsion could rapidly spread on the wellbore surfaces, cause the adhering OBDF to curl into little droplets, and solubilize the removed OBDF. The removal efficiency can reach more than 98%. Low temperature and higher concentration of dispersed phase both increased the viscosity of nanoemulsions stabilized by surfactants. PEGs can induce the bridging of emulsion droplets at low temperature, leading to significant increase of nanoemulsions viscoelasticity at low temperature (around 5°C). To control the rheological properties of nanoemulsions, a hydrophobic association polymer, HAAP, was proposed. Nanoemulsions containing HAAP does not gel at low temperature (< 15°C). And the viscoelasticity of nanoemulsions increased slightly when the temperature is higher than 70°C because of the thermoassociating behavior of polymer, which can ensure the stability of the nanoemulsions at high temperature. This paper is helpful to establish a generic route for preparing nanoemulsions with controlled rheological properties under different temperature, which is benefit for their applications in offshore.


2019 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Seyed Hosseini-Kaldozakh ◽  
Ehsan Khamehchi ◽  
Bahram Dabir ◽  
Ali Alizadeh ◽  
Zohreh Mansoori

Today, the drilling operators use the Colloidal Gas Aphron (CGA) fluids as a part of drilling fluids in their operations to reduce formation damages in low-pressure, mature or depleted reservoirs. In this paper, a Taguchi design of experiment (DOE) has been designed to analyse the effect of salinity, polymer and surfactant types and concentration on the stability of CGA fluids. Poly Anionic Cellulose (PacR) and Xanthan Gum (XG) polymers are employed as viscosifier; Hexadecyl Trimethyl Ammonium Bromide (HTAB) and Sodium Dodecyl Benzene Sulphonate (SDBS) have been also utilized as aphronizer. Moreover, bubble size distributions, rheological and filtration properties of aphronized fluids are investigated. According to the results, the polymer type has the highest effect, whereas the surfactant type has the lowest effect on the stability of CGA drilling fluid. It was also observed that increasing salinity in CGA fluid reduces the stability. Finally, it should be noted that the micro-bubbles generated with HTAB surfactant in an electrolyte system, are more stable than SDBS surfactant.


2001 ◽  
Vol 2001 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Mervin F. Fingas ◽  
Ben Fieldhouse ◽  
James Lane ◽  
Joseph V. Mullin

ABSTRACT The results of studies conducted over the past 6 years to characterize why water-in-oil emulsions form are summarized. It is shown that water droplets are held in oil by a combination of viscous and interfacial forces. The stability of an emulsion is very important in understanding its formation because stability is the endpoint or measurement of the entire process. Emulsions can be grouped into three categories: stable, unstable, and mesostable. Each has distinct physical properties. For example, the viscosity of a stable emulsion at a shear rate of I reciprocal second is at least three orders-of-magnitude greater than that of the starting oil. An unstable emulsion usually has a viscosity no more than two orders-of-magnitude greater than that of the starting oil. The zero-shear-rate viscosity is at least six orders-of-magnitude greater than the starting oil for a stable emulsion. For an unstable emulsion, it is usually less than two or three orders-of-magnitude greater than the viscosity of the starting oil. and finally, a stable emulsion has a significant elasticity, whereas an unstable emulsion does not. The stability of emulsions has been studied by examining their asphaltene content and their resin content. Results are reported showing that asphaltenes and resins are responsible for stability. It is noted that, given the correct chemical composition, primarily asphaltenes, sea energy is needed. The properties of the starting oil are the important factor in determining what type of water-in-oil state is produced. Composition and property ranges are given for the starting oil to form each of the water-in-oil states. Important property factors are the asphaltene content, resin content, and starting oil viscosity.


2021 ◽  
Vol 58 (2) ◽  
pp. 121-126
Author(s):  
R. M. Farag ◽  
A. M. Salem ◽  
A. A. El-Midany ◽  
S. E. El-Mofty

Abstract Invasion of fluids into porous media during drilling can lead to irreparable damage and reduced well productivity. Hence, minimizing the filtration loss of the drilling fluid into the formation is very important. The stability of colloidal suspensions plays a crucial role in controlling the interfacial forces and consequently on minimizing the filtration. The zeta potential is an indicator of the stability of colloids with respect to their electrostatic interactions. In this study, the rheological properties of bentonite suspensions are investigated with and without additives. The starch and CMC were used as additives to enhance the rheological properties of bentonite. The effects of these additives on the drilling fluid filtration were examined. Zeta-potential, viscosity, gel strength and yield point were measured to characterize the extent to which control of the filtration loss of the drilling fluids can be achieved. The zeta-potential and the amount of filtration loss of water-bentonite suspensions were correlated. Finally, the results showed that the addition of either starch or carboxymethyl cellulose (CMC) enhances the filtration properties of water-bentonite suspensions.


2013 ◽  
Vol 829 ◽  
pp. 818-824
Author(s):  
Sahar Kafashi ◽  
Ramin Taghdimi ◽  
Gholamreza Karimi

This study was aimed to investigate the rheological properties and the possibility of nano(Na, Ca )- bentonites nanoproducts to meet the required drilling mud properties. Sepiolite (Sp) and the mixture of 2% nanoNaB with 1% Sp were collected and prepared from Irans oil Company (NIOC). The nanoclay performance evaluation involved the experimental tests of the rheological properties, filtration and gel strength. According to the results obtained from flow properties tests for the mixture, it was indicated that the mixture was not adequate to be a suitable drilling fluid. The main objective was to make stable dispersions with nanobentonite and sepiolite by using a water soluble polymer as stabilizer. The changes in the rheological properties of bentonite were investigated at various concentrations of polyvinyl alcohol (PVA) to discover the stability of the dispersions. The standard API tests were applied for drilling fluid to determine the properties of dispersions.


2013 ◽  
Vol 62 (1) ◽  
Author(s):  
Issham Ismail ◽  
Nur Suriani Mamat ◽  
Baihaqi Mamat ◽  
Ahmad Shamsulizwan Ismail ◽  
Azmi Kamis ◽  
...  

An underbalanced drilling using foam drilling fluid is one of the most effective solutions which are capable of preventing formation damage, differential sticking, or circulation lost. Nevertheless, the limitation of using foam drilling fluid is the stability of its rheological properties which would affect its lubricity characteristics. Therefore, a research study was carried out to determine the stability and effectiveness of water soluble polymers as an additive in foam drilling fluid. To produce the required and most stable foam, four types of surfactants had been tested, namely sodium dodecyl sulfate (anionic), cetyltrimethylammonium bromide (cationic), T×100 (non ionic), and n-alkyl betaines (amphoteric). Then, the water soluble polymers, namely xanthan gum, hydroxyethyl cellulose, guar gum, and carboxymethyl cellulose, were evaluated as a stabilizer in the said foam drilling fluid. The laboratory works involved lubricity and rheological properties tests, which were conducted at ambient condition. The experimental results showed that the use of xanthan gum with anionic surfactant produced the most stable foam drilling fluid compared to other polymers. Rheological properties of the polymer foam drilling fluid were compared with water-based mud, and it was revealed that polymer foam drilling fluid could perform as effective as the latter. The significant advantage of using polymer foam drilling fluid was its coefficient of friction which was found to be lower than the water-based mud. 


Sign in / Sign up

Export Citation Format

Share Document