scholarly journals Evaluation of Inhibitive Performance of Acidic Extract of Eichornia Crassipeson Corrosion of Low Carbon Steel in 1M Sulphuric Acid Solution

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Sidikat I Kuye ◽  
Emmanuel Amaechi ◽  
Nurudeen O Adekunle ◽  
Olayide R Adetunji ◽  
Alex F Adisa ◽  
...  

Corrosion inhibition potential of Eichhornia crassipes extract on low carbon steel in 1 M sulphuric acid solution was investigated using gravimetric method and corrosion rate. The experiment was carried out for 3 hours at different concentration of Eichhornia crassipes extract and temperatures of 26.6°C, 40°C and 60°C. Arrhenius and improved Arrhenius equations were used to determine the thermodynamics properties of the reaction while the nature of the reaction was proposed by adsorption isotherms. The results showed that corrosion rate decreased in the presence of the extract except in 60oC. Inhibition efficiency also increased with extract concentration with the highest (82%) occurring at room temperature and 5% concentration. Inhibition efficiency decreased with increase in temperature with almost no inhibition at 60oC, this is associated with physisorption. Activation energy () and activation enthalpy () both had positive values and they increased in the presence of Eichhornia crassipes extract, those for inhibited solution were higher than those for uninhibited solution, these can also be attributed to physisorption. Inhibition  reaction obeyed Langmuir adsorption isotherm. Gibbs free energy () calculated for the reaction is -8.509 to -11.767 kJ mol-1.

CORROSION ◽  
1966 ◽  
Vol 22 (5) ◽  
pp. 143-146 ◽  
Author(s):  
W. McLEOD ◽  
R. R. ROGERS

Abstract Corrosion rate data are presented for low carbon steel in (1) a combination of sulfur dioxide, water vapor and air, and (2) aqueous solutions of sulfurous acid in the absence of air, at ordinary temperature. Information as to the nature of the corrosion products is presented and it is shown that this depends on the place in which the corrosion takes place to an important extent.


2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


CORROSION ◽  
10.5006/3820 ◽  
2021 ◽  
Author(s):  
Wei Liu ◽  
Huayi Yin ◽  
Kaifa Du ◽  
Bing Yang ◽  
Dihua Wang

Corrosion-resistant metals and alloys towards liquid metals determine the service performances and lifetime of the devices employing liquid metals. This paper studies the static corrosion behaviors of iron, chromium, nickel, low carbon steel, and four types of stainless steels (SS410, SS430, SS304, SS316L) in liquid Sb-Sn at 500 oC, aiming to screen corrosion-resistant SS for Li||Sb-Sn liquid metal batteries (LMBs). The corrosion rates of Fe and Ni are 0.94 μm h-1 and 6.03 μm h-1 after 160 h’s measurement, respectively. Cr shows a low corrosion rate of < 0.05μm h-1, which is due to the formation of a relatively stable Cr-Sb layer that may be able to prevent the interdiffusion between the solid substrate and liquid Sb-Sn. Ni has a high corrosion rate because the formed Ni-Sb and Ni-Sn compounds are soluble in the liquid Sb-Sn. The corrosion products of both pure metals and SS can be predicted by thermodynamic and phase diagram analysis. Among the four types of SS, SS430 shows the best corrosion resistance towards liquid Sb-Sb with a corrosion rate of 0.19 μm h-1. Therefore, a liquid Sb-Sn resistant material should have a high Cr content and a low Ni content, and this principle is applicable to design metallic materials not only for LMBs but also for other devices employing liquid Sb- and Sn-containing liquid metals.


1985 ◽  
Vol 38 (8) ◽  
pp. 1133 ◽  
Author(s):  
BG Pound ◽  
MH Abdurrahman ◽  
MP Glucina ◽  
GA Wright ◽  
RM Sharp

The corrosion rates of low-carbon steel, and 304, 316 and 410/420 stainless steels in simulated geothermal media containing hydrogen sulfide have been measured by means of the polarization resistance technique. Good agreement was found between weight-loss and polarization resistance measurements of the corrosion rate for all the metals tested. Carbon steel formed a non-adherent film of mackinawite (Fe1 + xS). The lack of protection afforded to the steel by the film resulted in an approximately constant corrosion rate. The stainless steels also exhibited corrosion rates that were independent of time. However, the 410 and 420 alloys formed an adherent film consisting mainly of troilite ( FeS ) which provided only limited passivity. In contrast, the 304 and 316 alloys appeared to be essentially protected by a passive film which did not seem to involve an iron sulfide phase. However, all the stainless steels, particularly the 410 and 420 alloys, showed pitting, which indicated that some breakdown of the passive films occurred.


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


ROTOR ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Naufan Arviansyah ◽  
Sumarji Sumarji ◽  
Digdo Listyadi Setyawan

This research have a purpuse to know corrosion rate in pipe X52 and A53 at oil sludge media caused BS and W. Corrosion is a damage of metal that occurs because reaction between metal with environtment and produce unwanted of corrosion product. Pipe X52 and A53 is a type of low carbon steel that use for fluid transportation system in industry. Oil sludge is a sediment of crude oil from main gathering storage and containing variouses elements. Oil sludge have a one of element is Basic Sediment and Water that is can make corrosion happen to distribution pipes. Measuring Method used in this research is weight loss method. The result of corrosion rate in Oil Sludge media containing 30,17% BS and W for pipe A53 is 1,64 x 10-2 mmpy and the result for pipa X52 is 2,47 x 10-2 mmpy. The result of corrosion rate in Oil Sludge media containing 60,67% BS and W for pipe A53 is 2,12 x 10-2 mmpy and for pipe X52 the result is 3,13 x 10-2 mmpy. The result of this research showed pipe A53 have more resistance than pipe X52. The corrosion is classified as uniform corrosion. Keywords : A53, Weight Loss, Oil Sludge, X52.


Sign in / Sign up

Export Citation Format

Share Document