scholarly journals Numerical Simulation of Conjugate Heat Transfer in Forced Convective Boundary Bilayered Cylindrical Pipe with Different Peclet Numbers

Author(s):  
Oluwasegun S Omosehin ◽  
Adekunle O Adelaja

The heat transfer performance of bilayered composite systems through which thermally developing laminar fluids flow for cases in which axial conduction is either significant or negligible has been investigated. The heat transfer problems considered as two dimensional conjugate problems with appropriate boundary conditions were solved via computational fluid dynamics (CFD) approach in ANSYS 16.0. A parametric study was conducted to investigate the effects of Péclet number (Pe), ratio of the thermal conductivity of the laminate composite (k21) and the laminate composite dimensionless-thickness ratio  on the wall-fluid interfacial temperature and interfacial heat flux for Pe of 5, 100 and 1000, varying between 0.4 and 1.6, Bi of 5, kwf of 20, k21 between 0.025 and 1, and  of 0.71. The effect of Pe was found to be more pronounced on the interfacial heat flux. Also, the changes in k21 and were shown to reduce with reduction in Pe. Keywords— Composite cylinder, convective heat transfer, Numerical simulation; thick-walled pipes.

Author(s):  
Wai Hing Wong ◽  
Normah Mohd. Ghazali

Kertas kerja ini membincangkan simulasi berangka ke atas sinki haba saluran mikro dalam penyejukan alatan mikroelektronik. Model Dinamik Bendalir Berkomputer (CFD) tiga dimensi dibina menggunakan pakej komersil, FLUENT, untuk mengkaji fenomenon aliran bendalir dan pemindahan haba konjugat di dalam suatu sinki haba segi empat yang diperbuat daripada silikon. Model ditentusahkan dengan keputusan daripada uji kaji dan pengkajian berangka yang lepas untuk lingkungan nombor Reynolds kurang daripada 400 berdasarkan diameter hidraulik 86 mm. Kajian ini mengambil kira kesan kelikatan bendalir yang bersandaran dengan suhu dan keadaan aliran pra–membangun dari segi hidrodinamik dan haba. Model memberi maklumat tentang taburan suhu dan fluks haba yang terperinci di dalam sinki haba saluran mikro. Kecerunan suhu yang tinggi dicatat pada kawasan pepejal berdekatan dengan sumber. Fluks haba paling tinggi didapati pada dinding tepi saluran mikro diikuti oleh dinding atas dan bawah. Purata pekali pemindahan haba yang lebih tinggi bagi silikon menjadikan ia bahan binaan sinki haba saluran mikro yang lebih baik berbanding dengan kuprum dan aluminium. Peningkatan nisbah aspek saluran mikro yang bersegi empat memberi kecekapan penyejukan yang lebih tinggi kerana kelebaran saluran yang berkurangan memberi kecerunan halaju yang lebih tinggi dalam saluran. Nisbah aspek yang optimum yang diperoleh adalah dalam lingkungan 3.7 – 4.1. Kata kunci: Saluran mikro, CFD, FLUENT, simulasi berangka, penyejukan mikroelektron The paper discusses the numerical simulation of a micro–channel heat sink in microelectronics cooling. A three–dimensional Computational Fluid Dynamics (CFD) model was built using the commercial package, FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in a silicon–based rectangular microchannel heatsink. The model was validated with past experimental and numerical work for Reynolds numbers less than 400 based on a hydraulic diameter of 86 mm. The investigation was conducted with consideration of temperaturedependent viscosity and developing flow, both hydrodynamically and thermally. The model provided detailed temperature and heat flux distributions in the microchannel heatsink. The results indicate a large temperature gradient in the solid region near the heat source. The highest heat flux is found at the side walls of the microchannel, followed by top wall and bottom wall due to the wall interaction effects. Silicon is proven to be a better microchannel heatsink material compared to copper and aluminum, indicated by a higher average heat transfer. A higher aspect ratio in a rectangular microchannel gives higher cooling capability due to high velocity gradient around the channel when channel width decreases. Optimum aspect ratio obtained is in the range of 3.7 – 4.1. Key words: Microchannel, CFD, FLUENT, numerical simulation, microeletronics cooling


2016 ◽  
Vol 804 ◽  
pp. 646-687 ◽  
Author(s):  
Ryoichi Kurose ◽  
Naohisa Takagaki ◽  
Atsushi Kimura ◽  
Satoru Komori

Turbulent heat transfer across a sheared wind-driven gas–liquid interface is investigated by means of a direct numerical simulation of gas–liquid two-phase turbulent flows under non-breaking wave conditions. The wind-driven wavy gas–liquid interface is captured using the arbitrary Lagrangian–Eulerian method with boundary-fitted coordinates on moving grids, and the temperature fields on both the gas and liquid sides, and the humidity field on the gas side are solved. The results show that although the distributions of the total, latent, sensible and radiative heat fluxes at the gas–liquid interface exhibit streak features such that low-heat-flux regions correspond to both low-streamwise-velocity regions on the gas side and high-streamwise-velocity regions on the liquid side, the similarity between the heat-flux streak and velocity streak on the gas side is more significant than that on the liquid side. This means that, under the condition of a fully developed wind-driven turbulent field on both the gas and liquid sides, the heat transfer across the sheared wind-driven gas–liquid interface is strongly affected by the turbulent eddies on the gas side, rather than by the turbulent eddies and Langmuir circulations on the liquid side. This trend is quite different from that of the mass transfer (i.e. $\text{CO}_{2}$ gas). This is because the resistance to heat transfer is normally lower than the resistance to mass transfer on the liquid side, and therefore the heat transfer is controlled by the turbulent eddies on the gas side. It is also verified that the predicted total heat, latent heat, sensible heat and enthalpy transfer coefficients agree well with previously measured values in both laboratory and field experiments. To estimate the heat transfer coefficients on both the gas and liquid sides, the surface divergence could be a useful parameter, even when Langmuir circulations exist.


Author(s):  
Haomin Yuan ◽  
Elia Merzari

The flow characteristic of fluid at low Prandtl number is of continued interest in the nuclear industry because liquid metals are to be used in the next-generation nuclear power reactors. In this work we performed direct numerical simulation (DNS) for turbulent channel flow with fluid of low Prandtl number. The Prandtl number was set to 0.025, which is representative of the behavior of liquid metals. Constant heat flux was imposed on the walls to study heat transfer behavior, with different boundary conditions for temperature fluctuation. The bulk Reynolds number was set as high as 50,000, with a corresponding friction Reynolds number of 1,200, which is closer to the situation in a reactor or a heat exchanger than used in normally available databases. Budgets for turbulent variables were computed and compared with predictions from several RANS turbulence models. In particular, the Algebraic Heat Flux Model (AHFM) has been the focus of this comparison with DNS data. The comparisons highlight some shortcomings of AHFM along with potential improvements.


1982 ◽  
Vol 104 (1) ◽  
pp. 48-54 ◽  
Author(s):  
R. A. Nelson

Mechanisms in the postcritical heat flux region that provide understanding and qualitative prediction capability for several current force-convective heat-transfer problems are discussed. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod cooldown and quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced-convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may be either hydrodynamically or thermodynamically controlled.


2017 ◽  
Vol 21 (4) ◽  
pp. 1627-1632 ◽  
Author(s):  
Jia-Jia Wu ◽  
Hong Tang ◽  
Yu-Xuan Wu

This paper proposes an effective method to predict the thermal conductivity of plain woven blended fabric to optimize woven fabric structure, and to evaluate thermal comfort. The unit cell model of fabric is established for numerical simulation of heat transfer through thickness. The thermal conductivity of blended yarns is calculated by a series model. The temperature and heat flux distributions are verified experimentally.


Author(s):  
Makoto Shibahara ◽  
Qiusheng Liu ◽  
Koichi Hata ◽  
Katsuya Fukuda

Abstract Numerical simulation of boiling heat transfer for subcooled water flowing in a small-diameter tube was conducted using the commercial computational fluid dynamics (CFD) code, PHOENICS ver. 2013. A small-diameter tube (d = 1.0–2.0 mm) was modeled in the simulation. A uniform heat flux with an exponential function was given at the inner tube wall as the boundary conditions. The inner wall boundary condition was set to a non-slip. The inlet temperature ranged from 302 to 312 K. The flow velocities of d = 1.0 mm and d = 2.0 mm are 9.29 m/s and 2.34 m/s, respectively. The transient analysis was carried out from the non-boiling region since the heat flux increased with time in the author’s experiments. The governing equations including the energy equation were discretized using the finite volume method in the PHOENICS code. The SIMPLE method was applied for the numerical simulation. For modeling boiling phenomena in the tube, the Eulerian-Eulerian two-fluid model was adopted using the interphase slip algorithm of PHOENICS code. In the experiment, a platinum tube was used as the experimental tube (d = 1.0–2.0 mm) to conduct joule heating by direct current. The distilled and deionized water was pressured by the pressurizer. The heat generation rate of the tube was controlled with the exponential function to obtain the transient heat transfer characteristics from the non-boiling region. The surface superheat increased as the heat flux increased in the experiment. The numerical simulation predicted the experimental data well. When the heat flux of the experiment was reached to the CHF point, the predicted value of heat transfer coefficient was approximately 3.5 % lower than that of the experiment.


Sign in / Sign up

Export Citation Format

Share Document