scholarly journals DC GAS BREAKDOWN AND TOWNSEND DISCHARGE IN CO2

2020 ◽  
pp. 154-158
Author(s):  
V.A. Lisovskiy ◽  
S.V. Dudin ◽  
P.P. Platonov ◽  
V.D. Yegorenkov

We report the breakdown curves and current-voltage characteristics (CVC) of the Townsend mode DC discharge we have measured in carbon dioxide. We compare the breakdown curves measured with two different techniques. With the first technique we regard as breakdown voltage the maximum voltage which we can apply across the electrodes without igniting the discharge with fixed values of the inter-electrode distance and the gas pressure. With the second technique we register the CVC of the Townsend mode in the μA-mA range and then extrapolate them to zero current. We reveal that in the nA-μA range the CVCs of the Townsend mode may have a complicated behavior due to the formation of the space charge. Therefore the second technique furnishes incorrect values of the breakdown voltage.

2009 ◽  
Vol 615-617 ◽  
pp. 963-966 ◽  
Author(s):  
Taku Horii ◽  
Tomihito Miyazaki ◽  
Yu Saito ◽  
Shin Hashimoto ◽  
Tatsuya Tanabe ◽  
...  

Gallium nitride (GaN) vertical Schottky barrier diodes (SBDs) with a SiNx field plate (FP) structure on low-dislocation-density GaN substrates have been designed and fabricated. We have successfully achieved the SBD breakdown voltage (Vb) of 680V with the FP structure, in contrast to that of 400V without the FP structure. There was no difference in the forward current-voltage characteristics with a specific on-resistance (Ron) of 1.1mcm2. The figure of merit V2b/Ron of the SBD with the FP structure was 420MWcm-2. The FP structure and the high quality drift layers grown on the GaN substrates with low dislocation densities have greatly contributed to the obtained results.


1996 ◽  
Vol 422 ◽  
Author(s):  
S. J. Chang

Nd-doped semiconductor light-emitting diodes were fabricated by implanting Nd ions into a GaAs epi-layer. The fabricated GaAs:Nd diodes show good current-voltage characteristics with a typical reverse breakdown voltage between 8 and 12 V By injecting minority carriers into the diodes, Nd3+ related emissions were observed, at 77 K, in the 0.92, 1.11, and 1.3 μm regions. These electroluminescence signals correspond to the transitions from Nd3+4F3/2 state to the Nd3+4I9/2, 4I1/2, and 4I13/2 states, respectively. The measured external quantum efficiency of the GaAs:Nd diodes at 77 K, was 5 × 10−7.


2013 ◽  
Vol 41 (8) ◽  
pp. 2400-2407
Author(s):  
Romaric Landfried ◽  
Richard Andlauer ◽  
Philippe Dessante ◽  
Michael J. Kirkpatrick ◽  
Thierry Leblanc ◽  
...  

2018 ◽  
Vol 16 (37) ◽  
pp. 65-72
Author(s):  
Mazin H. Hasan

DC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature and the electron density are in the range of (2.93 –5.3) eV and (10-16 -10-17) m-3 respectively.


2021 ◽  
Vol 91 (8) ◽  
pp. 1276
Author(s):  
И.А. Шорсткий ◽  
N. Yakovlev

Experimental results of the Townsend discharge in the air gap and atmospheric pressure from a multi-pin cathode based on a dynamic platform of magnetically controlled Fe and Fe-Al particles presented. Dynamic platform method formation from magnetically controlled particles for cathode surface presented. The current-voltage characteristics are obtained for various configurations of the cathode design (with a flat electrode without magnetically controlled particles, with a multi-pin cathode with magnetically controlled Fe or Fe-Al particles), as well as with the presence of a heated spiral in the electrode gap. The use of a multi-pin cathode based on the dynamic platform of magnetically controlled Fe and Fe-Al particles allows to maintain the average electric field strength in the discharge gap and to increase the spark discharge current.


2018 ◽  
Vol 27 (7) ◽  
pp. 075011 ◽  
Author(s):  
Tao Ma ◽  
Hai-Xing Wang ◽  
Qi Shi ◽  
Shi-Ning Li ◽  
Anthony B Murphy

Author(s):  
Gun Yong Sung ◽  
Stuart McKernan ◽  
C. Barry Carter

Since the development of the zinc oxide-based varistor with highly nonlinear current-voltage characteristics and high energy absorption capabilities [1], the electro-physical behavior of non-ohmic ZnO varistors has been studied and related to the microstructure of the material, the conduction and degradation mechanisms, the dielectric properties, and the high pressure memory. An extensive research effort has been aimed at characterizing ZnO/ZnO grain boundary regions in order to explain the origin of the nonlinear current/voltage characteristics of these materials [2-4]. A typical ZnO-varistor material contains small concentrations of several metal oxides (e.g., Bi2O3, CoO, MnO, Sb2O3, and Cr2O3). Co and Mn are contained within the ZnO grains, while the other “impurities are present as several polymorphic forms of Bi2O3, the spinel, Zn7Sb2O12, and the pyrochlore Zn2Bi3Sb3O14, are present as intergranular phases [1,5-7]. The breakdown voltage depends on the number of grain boundaries between the electrodes of the ZnO varistor device [8]. Therefore, the breakdown voltage is influenced by the presence and form of these intergranular phases, and the size, shape and distribution of the ZnO grains. In ZnO-Bi2O3-MnO-TiO2-based varistor materials, the morphology of the ZnO grains is strongly influenced by their tendency to grow preferentially along the directions perpendicular to the prism planes [9] (i.e., the basal plane becomes a common grain boundary facet plane). The aim of the present study is to advance the understanding of the role of the special grain boundaries which are found in air-quenched Zn0-Bi2O3-MnO-TiO2-based varistor materials.


2021 ◽  
pp. 19-24
Author(s):  
Yu.V. Kovtun ◽  
V.E. Moiseenko ◽  
S.M. Maznichenko ◽  
A.V. Lozin ◽  
V.B. Korovin ◽  
...  

For the Uragan-2M stellarator, a glow discharge cleaning (GDC) system is developed. An overview of the GDC system design is presented. The first experimental studies of GDC in an argon atmosphere have been carried out. The dependence of the breakdown voltage on the argon pressure is determined. The current-voltage characteristics of the gas discharge were measured as a function of the working gas pressure also in presence of a magnetic field.


Sign in / Sign up

Export Citation Format

Share Document