Software for GIS-processing of airborne lidar data

2020 ◽  
pp. 2-11
Author(s):  
B.A. Novakovsky ◽  
◽  
A.V. Kudryavtsev ◽  
A.L. Entin ◽  
◽  
...  

The paper considers GIS software which may be utilized for airborne lidar data processing. Software list includes proprietary MicroStation with TerraScan plugin, Global Mapper, ArcGIS, ERDAS Imagine, LAStools, as well as free and open source SAGA, WhiteboxTools, and PDAL.io. Possibilities of import-export, 2D and 3D data visualization, point cloud editing and derivation of GIS datasets are examined for each software. Computational efficiency assessment is performed for the procedure of interpolation point elevation data in different software. As a result, the advantages and disadvantages of the considered programs were identified in relation to various tasks. Key words: airborne laser scanning, software, geoinformation mapping, computational efficiency.

2018 ◽  
Author(s):  
Peter Bandura ◽  
Michal Gallay

Recent production of a new radar-based global DEM by the TanDEM-X space mission has opened new options for geomorphometric analysis across multiple scales providing 0.4 arc second spatial resolution. However, the accuracy and suitability of this data has not been evaluated in such an extensive manner as for the widely exploited SRTM data. We present a validation of the vertical accuracy of TanDEM-X DEM product and evaluation of its suitability for landform classification in a forested karst area. The Geomorphons method was used for the automated landform classification focused on identification of dolines for which polygons of dolines mapped by expert-driven approach were used for validation. Airborne lidar data in the form of DSM and DTM were used as the reference dataset for validation of the DEM. The results show that the vertical RMSE of the TanDEM-X data is 3.42 m with respect to lidar DSM and 9.64 m with respect to lidar DTM. The identification of dolines by the geomorphon approach achieved 73 % with TanDEM-X, lower than for the lidar DTM (85 %).


Author(s):  
N. El-Ashmawy ◽  
A. Shaker

<p><strong>Abstract.</strong> Airborne Laser scanners using the Light Detection And Ranging (LiDAR) technology is a powerful tool for 3D data acquisition that records the backscattered energy as well. LiDAR has been successfully used in various applications including 3D modelling, feature extraction, and land cover information extraction. Airborne LiDAR data are usually acquired from different flight trajectories producing data in different strips with significant overlapped areas. Combining these data is required to get benefit of the multiple strips’ data that acquired from different trajectories. This paper introduces an approach called CMCD “Combined Multiple Classified Datasets” to maximize the benefits of the multiple LiDAR strips’ data in land cover information extraction. This approach relies on classifying each strip data then combining the results based on the <i>a posteriori</i> probability of each class of the classified data and the position of the classified points.</p><p>Two datasets from different overlapped areas are selected to test the proposed CMCD approach; both are captured from different flight trajectories. A comparison has been conducted between the CMCD results and the results of the common merging data approaches. The results indicated that the classification accuracy of the proposed CMCD approach has improved the classification accuracy of the merged data-layers by 6% and 10% for the two datasets.</p>


2012 ◽  
Vol 518-523 ◽  
pp. 5648-5655
Author(s):  
Hui Lin ◽  
Ya Zhou Ji ◽  
Liang Liang ◽  
Wei Liu ◽  
Zhao Ling Hu

The research of Three Dimensional City Model (3DCM) has become a hot topic in GIS field in recent years, and it also has played an important role in traffic, land, mining, surveying and mapping, and other fields, especially in urban planning. However, the difficulty to acquire 3D data is the key obstacle to the further development of 3DCM. Airborne LIDAR, integrating GPS, INS and scanning laser rangefinder, can rapidly acquire the 3D position of ground by airplane, which is very economical, efficient and convenient to acquire 3D data. Because traditional three-dimensional data acquisition method can’t meet the need of the city’s fast development, airborne LIDAR technology is regarded as a convenient, swift, high-efficient three-dimensional data acquisition method. Compared with traditional methods, the airborne LIDAR technology has the following characteristics: 1) High efficiency: in 12 hours, the airborne LIDAR can scan 1000 square kilometers, next, with the help of the related post-processing software, LIDAR cloud data can transform them into GIS format or other receivable format in certain automatic or semiautomatic mode. 2) High precision: because the pulse of laser light isn’t easily subject to shadow and solar angle, it greatly improves the data quality. The flight height limit has no influence on its elevation data precision, which is superior to the conventional photogrammetry. The plane precision may achieve 0.15 to 1 meter, the elevation precision may achieve 10 centimeters. 3) All-weather feature: airborne LIDAR is active remote sensing without considering the digital aerial photogrammetry. 4) Rich information: with the aid of airborne LIDAR ,we can obtains not only the three dimensional coordinate of ground point, but also the three dimensional coordinate of terrain details, such as trees, buildings, roads. If it is integrated with CCD, it could gains image information. We acquired the airborne LIDAR data of 20 square kilometers in the central area of Shanghai using ALTM3100 airborne LIDAR system of the Optech company in 2006.This paper introduces the data processing procedure of the airborne LIDAR data, LIDAR system uses random commercial software to process plane GPS tracking data、plane attitude data、 laser ranging data and the swinging angle data of laser scanning mirror, finally, obtaining the three-dimensional coordinates(X,Y,Z) data of various surveying points. Which three-dimensional discrete dot matrix data is without attribute suspending in the air namely LIDAR original data, named “point cloud”. LIDAR data performs pre-processing to obtain digital surface model (DSM), which is classified and extracted, we acquire topography and object related to modeling, preparing for three-dimensional city model. Data pre-processing includes abnormal point deletion, coordinate transformation and flight strip combination. At present, we used famous business software TerraSolid, developed by Company of Finland to realize the classification and extraction from the LIDAR data TerraSolid depends on MicroStation platform, on the basis of classification and extraction algorithms presented by Axelsson, et al. of Swedish, including a lot of module such as TerraScan, TerraModeler and TerraPhoto. TerraScan is used in the field of LIDAR data classification and extraction, TerraModeler is used for producing and dealing with various planes, TerraPhoto is used for dealing with the primitive image, topography model and building model are got by using this software, complicated artificial building (Oriental Pearl, Jin Mao mansion etc.) need artificial repair and disposal, data processing of 20 sq. km. takes more than one month, efficiency has been improved greatly on the premise of guaranteeing the precision. Topography model and building model can be obtained by using TerraSolid and combining a few manual intervention based on DSM, The topography model is expressed with the triangulated irregular network (TIN), the building model is expressed with 3ds format, three dimensional model of non - texture of Lujiazui region of Shanghai was gained by LIDAR data. In order to achieving better visualization effect, the topography model overlaps orthophoto, and stuck true texture to building model, true city landscape of Lujiazui region of Shanghai is established. This paper has introduce post-processing procedure of airborne LIDAR data systematically, has realized the fast reconstruction of three-dimension urban model based on LIDAR data, enable this technology to serve the information construction of the city better.


2018 ◽  
Author(s):  
Peter Bandura ◽  
Michal Gallay

Recent production of a new radar-based global DEM by the TanDEM-X space mission has opened new options for geomorphometric analysis across multiple scales providing 0.4 arc second spatial resolution. However, the accuracy and suitability of this data has not been evaluated in such an extensive manner as for the widely exploited SRTM data. We present a validation of the vertical accuracy of TanDEM-X DEM product and evaluation of its suitability for landform classification in a forested karst area. The Geomorphons method was used for the automated landform classification focused on identification of dolines for which polygons of dolines mapped by expert-driven approach were used for validation. Airborne lidar data in the form of DSM and DTM were used as the reference dataset for validation of the DEM. The results show that the vertical RMSE of the TanDEM-X data is 3.42 m with respect to lidar DSM and 9.64 m with respect to lidar DTM. The identification of dolines by the geomorphon approach achieved 73 % with TanDEM-X, lower than for the lidar DTM (85 %).


2019 ◽  
Vol 11 (14) ◽  
pp. 1721 ◽  
Author(s):  
Amy L. Neuenschwander ◽  
Lori A. Magruder

NASA’s Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) launched in fall 2018 and has since collected continuous elevation data over the Earth’s surface. The primary scientific objective is to measure the cryosphere for studies related to land ice and sea ice characteristics. The vantage point from space, however, provides the opportunity to measure global surfaces including oceans, land, and vegetation. The ICESat-2 mission has dedicated products to the represented surface types, including an along-track elevation profile of terrain and canopy heights (ATL08). This study presents the first look at the ATL08 product and the quantitative assessment of the canopy and terrain height retrievals as compared to airborne lidar data. The study also provides qualitative examples of ICESat-2 observations from selected ecosystems to highlight the broad capability of the satellite for vegetation applications. Analysis of the mission’s preliminary ATL08 data product accuracy using an ICESat-2 transect over a vegetated region of Finland indicates a 5 m offset in geolocation knowledge (horizontal accuracy) well within the 6.5 m mission requirement. The vertical RMSE for the terrain and canopy height retrievals for one transect are 0.85 m and 3.2 m respectively.


Author(s):  
B. Kalantar ◽  
S. Mansor ◽  
Z. Khuzaimah ◽  
M. Ibrahim Sameen ◽  
B. Pradhan

Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.


2015 ◽  
Vol 26 (3-4) ◽  
pp. 132-140
Author(s):  
P. G. Kotsyuba ◽  
I. D. Semko ◽  
I. I. Kozak ◽  
T. V. Parpan ◽  
G. G. Kozak ◽  
...  

World experience shows that the survey of green spaces by traditional methods is very time consuming, costly and does not always get all the information you need to make of adequate management decisions by municipal authorities. The aim of this article was to show the main stages of analysis and prospects of urban green space using aerial lidar data and submit the effect of three-dimensional visualization of the study area. There were presented the possibilities and perspectives of using the data obtained from airborne laser scanning (ALS) for the analysis of greenery on the example of Poremba district in Lublin (Poland). Research conducted in Poremba district in the Polish city of Lublin (district was built from 1988 to 2005 and is located in the western part of the city). Analysis of green space conducted using quantitative analytical methods. By detailed analysis of the study area were used aerial lidar data from the year 2015. To classify aerial lidar data such software were used: LP360, ArcMap 10.3, Toolbox LAStools. The process of analysis begins with the definition of points, belonging to ground (Ground - GR), and the classification was realized using «lasground» with tools LAStools. The article is dedicated to development the method of estimation the tree height based on airborne LiDAR data. Method applies more information about the three-dimensional structure of natural objects derived from the processing of airborne LiDAR data compared with known methods. Furthermore, the method is adapted to determine and calculate characteristics of stand which using for tree inventory in cities. Methodological and algorithmic instructions to determine the tree parameters in city were proposed. These instructions allow automatically calculating the characteristics of the tree parameters, such as the allocation of each tree and tree height. The study area was analyzed in terms of the distribution of vegetation (separately individual growing trees and groups of trees). For that purpose there was applied an available ALS data. Based on the ALS data there were separated the tops of the trees and their height. In order to verify the ALS data there were used the results of field measurements (coordinates for the tree trunks, the diameter at breast height of trees, their height, crown projection). The analysis of the greenery within the Poremba district using the ALS data after verification with the field measurements proved to be an effective tool for the characterization of the greenery areas in particular city. This research may be important in terms of planning the planting of greenery areas and spatial development of the Lublin.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


2021 ◽  
Author(s):  
Renato César dos Santos ◽  
Mauricio Galo ◽  
André Caceres Carrilho ◽  
Guilherme Gomes Pessoa

Sign in / Sign up

Export Citation Format

Share Document