Computational and Experimental Investigations of Separation Control of LP Turbine Cascade Blades using Gurney Flaps

2021 ◽  
Vol 14 (3) ◽  
Author(s):  
Taher Schobeiri ◽  
Eric McFarland ◽  
Frederick Yeh

In this report the results of aerodynamic and heat transfer experimental investigations performed in a high Reynolds number turbine cascade test facility are analyzed. The experimental facility simulates the high Reynolds number flow conditions similar to those encountered in the space shuttle main engine. In order to determine the influence of Reynolds number on aerodynamic and thermal behavior of the blades, heat transfer coefficients were measured at various Reynolds numbers using liquid crystal temperature measurement technique. Potential flow calculation methods were used to predict the cascade pressure distributions. Boundary layer and heat transfer calculation methods were used with these pressure distributions to verify the experimental results.


Author(s):  
Tobias Schubert ◽  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract A particular turbine cascade design is presented with the goal of providing a basis for high quality investigations of endwall flow at high-speed flow conditions and unsteady inflow. The key feature of the design is an integrated two-part flat plate serving as a cascade endwall at part-span, which enables a variation of the inlet endwall boundary layer conditions. The new design is applied to the T106A low pressure turbine cascade for endwall flow investigations in the High-Speed Cascade Wind Tunnel of the Institute of Jet Propulsion at the Bundeswehr University Munich. Measurements are conducted at realistic flow conditions (M2th = 0.59, Re2th = 2·105) in three cases of different endwall boundary layer conditions with and without periodically incoming wakes. The endwall boundary layer is characterized by 1D-CTA measurements upstream of the blade passage. Secondary flow is evaluated by Five-hole-probe measurements in the turbine exit flow. A strong similarity is found between the time-averaged effects of unsteady inflow conditions and the effects of changing inlet endwall boundary layer conditions regarding the attenuation of secondary flow. Furthermore, the experimental investigations show, that all design goals for the improved T106A cascade are met.


Author(s):  
Jenny Baumann ◽  
Ulrich Rist ◽  
Martin Rose ◽  
Tobias Ries ◽  
Stephan Staudacher

The reduction of blade counts in the LP turbine is one possibility to cut down weight and therewith costs. At low Reynolds numbers the suction side laminar boundary layer of high lift LP turbine blades tends to separate and hence cause losses in turbine performance. To limit these losses, the control of laminar separation bubbles has been the subject of many studies in recent years. A project is underway at the University of Stuttgart that aims to suppress laminar separation at low Reynolds numbers (60,000) by means of actuated transition. In an experiment a separating flow is influenced by disturbances, small in amplitude and of a certain frequency, which are introduced upstream of the separation point. Small existing disturbances are therewith amplified, leading to earlier transition and a more stable boundary layer. The separation bubble thus gets smaller without need of a high air mass flow as for steady blowing or pulsed vortex generating jets. Frequency and amplitude are the parameters of actuation. The non-dimensional actuation frequency is varied from 0.2 to 0.5, whereas the normalized amplitude is altered between 5, 10 and 25% of the free stream velocity. Experimental investigations are made by means of PIV and hot wire measurements. Disturbed flow fields will be compared to an undisturbed one. The effectiveness of the presented boundary layer control will be compared to those of conventional ones. Phase-logged data will give an impression of the physical processes in the actuated flow.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Daniele Simoni ◽  
Marco Berrino ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
Francesco Bertini

The off-design performance of a highly loaded low pressure (LP) turbine cascade has been experimentally investigated, at the Aerodynamics and Turbomachinery Laboratory of Genova University, under steady and unsteady incoming flow conditions. Tests have been performed for different Reynolds numbers (Re = 70,000 and Re = 300,000), in order to cover the typical LP turbine working range. The incidence angle has been varied between i = −9 deg and +9 deg, in order to test off-design conditions characterizing the engine. For the unsteady case, upstream wake periodic perturbations have been generated by means of a tangential wheel of radial rods. The cascade and the moving bars system have been located over a common bearing in order to make them rigidly rotating. This solution allows a proper comparison of the cascade robustness at the incidence angle variation under steady and unsteady incoming flows, since all the other operating parameters have been kept the same. In order to survey the variation of the unsteady boundary conditions characterizing the off-design operation of the downstream cascade, time-mean and time-resolved wake structures have been analyzed in detail. For what concerns the cascade performance, profile aerodynamic loadings and total pressure loss coefficients at the cascade exit have been surveyed for the different incidence angles under both steady and unsteady inflows. Different total pressure loss sensitivity at the incidence angle variation has been observed for the steady and the unsteady inflow conditions. Hot-wire anemometer has been employed to obtain the time-mean pressure and suction side boundary layer velocity profiles at the blade trailing edge for the different conditions. The integral parameters at the cascade exit plane help to justify the different loss trend versus incidence angle found for the steady and the unsteady cases, explaining the different sensibility of the blade profile when this operates under realistic unsteady inflow condition.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Sven König ◽  
Bernd Stoffel ◽  
M. Taher Schobeiri

Comprehensive experimental investigations were conducted to get deeper insight into the physics of stator clocking in turbomachines. Different measurement techniques were used to investigate the influence of varying clocking positions on the highly unsteady flow field in a 1.5-stage axial low-pressure (LP) turbine. A Reynolds number typical for LP turbines as well as a two-dimensional blade design were chosen. Stator 2 was developed as a high-lift profile with a separation bubble on the suction side. This paper presents the results that were obtained by means of unsteady x-wire measurements upstream and downstream of Stator 2 and surface mounted hot-film measurements on the Stator 2 suction side. It was found that for the case when the Stator 1 wakes impinge close to the leading edge of Stator 2 the interaction between the Stator 1 and the rotor vortical structures takes place in proximity of the Stator 2 boundary layer, which leads to a shift of the transition point in the upstream direction. The major loss parameter concerning the Stator 2 aerodynamic performance could be attributed to the strength of the periodic fluctuations within the Stator 2 suction side boundary layer. A phase shift in the quasiwall shear stress signal in the front region of the Stator 2 vane was observed for different clocking positions.


2004 ◽  
Vol 37 (4) ◽  
pp. 488-496 ◽  
Author(s):  
Wolfram Heinke ◽  
Sven K�nig ◽  
Berthold Matyschok ◽  
Bernd Stoffel ◽  
Andreas Fiala ◽  
...  

1996 ◽  
Vol 118 (3) ◽  
pp. 468-478 ◽  
Author(s):  
G. Wilfert ◽  
L. Fottner

For the application of film cooling to turbine blades, experimental investigations were performed on the mixing processes in the near-hole region with a row of holes on the suction suction side of a turbine cascade. Data were obtained using pneumatic probes, pressure tappings, and a three-dimensional subminiature hot-wire probe, as well as surface flow visualization techniques. It was found that at low blowing rates, a cooling jet behaves very much like a normal obstacle and the mixing mainly takes place in the boundary layer. With increasing blowing rates, the jet penetrates deeper into the mainstream. The variation of the turbulence level at the inlet of the turbine cascade and the Reynolds number showed a strong influence on the mixing behavior. The kidney-shaped vortex and as an important achievement the individual horseshoe vortex of each single jet were detected and their exact positions were obtained. This way it was found that the position of the horseshoe vortex is strongly dependent on the blowing rate and this influences the aerodynamic mixing mechanisms. A two-dimensional code for the calculation of boundary layer flows called GRAFTUS was used; however, the comparison with the measurements showed only limited agreement for cascade flow with blowing due to the strong three-dimensional flow pattern.


Sign in / Sign up

Export Citation Format

Share Document