Modernization Directions of Tensile Strength Testing Machine RMP-1, for Standartized Flax Fiber Testing

Author(s):  
E.L. Pashin ◽  
A.V. Orlov
2016 ◽  
Vol 62 (No. 4) ◽  
pp. 198-204
Author(s):  
M. Brožek

The contribution contains results of bonded joints strength tests. The tests were carried out according to the modified standard ČSN EN 1465 (66 8510):2009. The spruce three-ply wood of 4 mm thickness was used for bonding according to ČSN EN 636 (49 2419):2013. The test samples of 100 × 25 mm size were cut out from a semi-product of 2,440 × 1,220 mm size in the direction of its longer side (angle 0°), in the oblique direction (angle 45°) and in the direction of its shorter side (crosswise – angle 90°). The bonding was carried out using eight different domestic as well as foreign adhesives according to the technology prescribed by the producer. All used adhesives were designated for wood bonding. At the bonding the consumption of the adhesive was determined. After curing, the bonded assemblies were loaded using a universal tensile-strength testing machine up to the rupture. The rupture force and the rupture type were registered. Finally, the technical-economical evaluation of the experiments was carried out. 


2019 ◽  
Vol 108 ◽  
pp. 26-38
Author(s):  
ŁUKASZ MATWIEJ ◽  
ROBERT KŁOS ◽  
MIROSŁAW BONOWSKI

Design of a snap connector to connect panel elements. The aim of this study was to design, manufacture and verify the tensile strength of a prototype snap connector to be used to connect panel elements. Firstly, analyses were conducted on solutions of commercially available designs for connectors invisible from the cabinet’s outside and those with minimized visibility. While searching for the best concept of connector design, three proposals were prepared, of which – after thorough analysis of design – one concept was selected. In the next step, the adopted solution was improved so that the connector met the previously formulated design requirements. In the course of further analyses, the causes and effects of failure were verified in order to limit or eliminate potential defects. In the next stage of the study, numerical calculations were conducted for the nut and the connector, concerning tensile strength, using the Autodesk Simulation Multiphysics program. After a prototype connector was manufactured, tensile strength tests were conducted on the connector using a strength testing machine. Experiments verified the correctness of the developed design in terms of geometry and the physico-mechanical properties of materials of individual elements, and resulted in possible changes proposed in the design of the final connector product.


2020 ◽  
Vol 9 (2) ◽  
pp. 8-15
Author(s):  
Anupam Kumar ◽  
Ramratan . ◽  
Rohit Kumar

The aim of this study is utilized agricultural waste which may be profitable, pollution free and economically viable for the farmer and industries. In this experiment short flax fiber pulp is the natural fiber component chemically treated with alkaline solutions. Six specimens will be prepared in different volume percentage of flax fiber pulp and epoxy resin in order to get more accurate results. In this study it has been aimed to use flax fibres in composite materials and to study the mechanical properties of the produced samples. The mechanical tests results (thickness test, Tensile strength and impact strength tests) and SEM micrographs indicated flax fibres as an alternative natural fibre source for developing reinforced composites for various industries. The content of short flax fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. All the sample have been tested in universal testing machine as per ASTM standard for tensile strength and impact strength it is observed that composite with 35% flax fiber pulp is having highest tensile strength of 4 mm (4.57 Mpa) and 8 mm (6.04 Mpa). The impact strength of composite with 35% flax fiber pulp was highest than 45% to 55% flax fiber pulp.


2017 ◽  
Vol 43 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Marcos Alexandre Fadanelli ◽  
Flávia Lucisano Botelho do Amaral ◽  
Roberta Tarkany Basting ◽  
Cecilia Pedroso Turssi ◽  
Bruno Salles Sotto-Maior ◽  
...  

The purpose of this study was to evaluate the effects of steam autoclave sterilization on the tensile strength of two types of resin cements used to bond customized CAD/CAM zirconia abutments onto titanium bases. Forty sets of zirconia abutments cemented to screwed titanium bases of implants analogs were divided into 4 groups (n = 10). Two groups were treated with a conventional chemically activated resin cement (ML, Multilink Ivoclar Vivadent) and the other two groups with a self-adhesive dual resin cement (RelyX U200, 3M ESPE). One group from each cement was submitted to steam autoclaving. The autoclave sterilization cycle was performed after 72 hours of cementation for 15 minutes at 121°C and 2.1 Kgf/cm2. The samples were subjected to tensile strength testing in a universal testing machine (200 Kgf, 0.5 mm/min), from which the means and standard deviations were obtained in Newtons. Results showed (via ANOVA and Tukey's test; α = 0.05) that in the absence of steam autoclaving, no difference was observed in tensile strength between the cements tested: ML: 344.87 (93.79) and U200: 280 (92.42) (P = .314). Steam autoclaving, however, significantly increased tensile strength for the ML: 465.42 (87.87) compared to U200: 289.10 (49.02) (P < .001). Despite the significant increase in the ML samples (P = .013), autoclaving did not affect the tensile strength of the U200 samples (P > 0.05). The authors concluded that steam autoclaving increases the mean tensile strength of the chemically activated cement compared to the dual-cure self-adhesive cement. The performance of both cements evaluated was similar if the sterilization step was disconsidered.


Author(s):  
Weronika Kowalik ◽  
Kinga Pachuta ◽  
Jerzy Jeznach

Abstract The stabilization and protection of shorelines using the broadleaf cattail and reed sweet grass. The article presents the results of studies on the mechanical properties of the broadleaf cattail Typha latifolia and reed sweet grass Glyceria maxima. The necessary study samples were collected from Lake Urszulewskie near Sierpc, Poland. The experiment was conducted using an Instron 5966 universal tensile strength testing machine. Tensile forces and the tensile strength of the individual parts of both plant species, i.e. below-ground stems (rhizomes), base of the stem and above-ground stems, were determined and compared with each other. The STATISTICA program was used for analysis. The calculated tensile strength values were compared to data of selected tree, shrub and plant species provided by other authors.


Author(s):  
A. A. Gorbatovskiy

The article presents results of strength tests of bismuth telluride prismatic samples obtained by growing crystals. These crystals have semiconductor properties and are used in the heat machines, the run-ability of which largely depends on the strength of crystals. Data available in the literature are significantly different from each other. It has been shown that, the most consistent strength tests results are obtained in case of bend testing. The measurement results of the elasticity modulus and tensile strength are given. For tests, an INSTRON testing machine with maximum direct stress of the 1000 H was used.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 370-384
Author(s):  
Hossein Noorvand ◽  
Kamil Kaloush ◽  
Jose Medina ◽  
Shane Underwood

Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the Phoenix, Arizona area indicated an interesting pattern of transverse/reflective cracking. These ARFC courses were placed several years ago on existing jointed plain concrete pavements for highway noise mitigation. Over the years, the shoulders had very noticeable and extensive cracking over the joints; however, the driving lanes of the pavement showed less cracking formation in severity and extent. The issue with this phenomenon is that widely adopted theories that stem from continuum mechanics of materials and layered mechanics of pavement systems cannot directly explain this phenomenon. One hypothesis could be that traffic loads continually manipulate the pavement over time, which causes some maltenes (oils and resins) compounds absorbed in the crumb rubber particles to migrate out leading to rejuvenation of the mastic in the asphalt mixture. To investigate the validity of such a hypothesis, an experimental laboratory testing was undertaken to condition samples with and without dynamic loads at high temperatures. This was followed by creep compliance and indirect tensile strength testing. The results showed the higher creep for samples aged with dynamic loading compared to those aged without loading. Higher creep compliance was attributed to higher flexibility of samples due to the rejuvenation of the maltenes. This was also supported by the higher fracture energy results obtained for samples conditioned with dynamic loading from indirect tensile strength testing.


2015 ◽  
Vol 754-755 ◽  
pp. 1017-1022 ◽  
Author(s):  
Petrică Vizureanu ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei ◽  
Andrei Victor Sandu ◽  
Kamarudin Hussin

.The paper present aspects about the obtaining of non-precious dental alloys (type CoCrMo and CoCrMoSi7), the determination of chemical composition by optical emission spectrometry and the experimental tests for determining the tensile strength, made on standard plate samples. The base material used in experiments was a commercial alloy, from CoCrMo system, which belongs to the class of dental non-precious alloys, intended to medical applications. The obtaining of studied alloy was made on arc re-melting installation, under vacuum, type MRF ABJ 900. The process followed to realize a rapid melting, with a maximum admissible current intensity. The samples for tests were obtained by casting in an electric arc furnace, under vacuum, in optimal conditions for melting and solidification and processing by electro-erosion, to eliminate all the disturbing factors which come by processing conditions for the samples. The determination of chemical composition for cobalt based alloys, by optical emission spectrometry, was made on SpectromaxX equipment with spark. The electrical discharge is made with the elimination of an energy quantity, fact which determine plasma forming and light issue. Tensile tests for standard samples, made from cobalt based alloy, was made on Instron 3382 testing machine, and assisted by computer. The obtained results are: elongation, elasticity modulus, tensile strength and offer complete information about the analyzed mechanical properties. For the certitude of obtained experimental results, the tests were made on samples with specific dimensions according ISO 6892-1:2009(E) standard, both for the tensile strength, and also machine operation.


2005 ◽  
Vol 127 (2) ◽  
pp. 257-262 ◽  
Author(s):  
William Jordan

This research project used hot embossing to create a strong and tough polymeric based composite structure. A honeycomb type structure was created by pressing small grooves into thin polycarbonate sheets. A trapezoidal die was used to create hexagonal shaped channels in the polymeric sheet. A number of these sheets were then bonded together to form a composite material. Carbon fibers were embedded into the channels in some of the laminates. The embossing process was carried out at an elevated temperature in an environmental chamber attached to an MTS servo hydraulic testing machine. The grooved structure had a 31% to 45% decrease in the apparent density compared to the ungrooved specimens. Bend tests, tensile tests, and Charpy impact tests were performed on laminates made from this material. The specific values of tensile strength, flexural modulus, and Charpy impact toughness were increased. A small percentage of fibers significantly increased both the stiffness and strength of the laminate.


Sign in / Sign up

Export Citation Format

Share Document