scholarly journals Standard operating Protocol (SOP) of Haematopoietic Stem Cells Enumeration

Human hematopoietic stem cells (HSCs) are obtained either from the bone marrow (BM), cord blood (CB) or peripheral blood (PB). Transplantation of HSCs occurs following various conditions like high doses of chemotherapy, diseases like; leukaemia, lymphoma, congenital metabolic defects, immunedeficiency illnesses and myeloblastic syndromes.

Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3919-3924 ◽  
Author(s):  
Jean C.Y. Wang ◽  
Monica Doedens ◽  
John E. Dick

Abstract We have previously reported the development of in vivo functional assays for primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of severe combined immunodeficient (SCID) and nonobese diabetic/SCID (NOD/SCID) mice following intravenous transplantation. Accumulated data from gene marking and cell purification experiments indicate that the engrafting cells (defined as SCID-repopulating cells or SRC) are biologically distinct from and more primitive than most cells that can be assayed in vitro. Here we demonstrate through limiting dilution analysis that the NOD/SCID xenotransplant model provides a quantitative assay for SRC. Using this assay, the frequency of SRC in cord blood (CB) was found to be 1 in 9.3 × 105 cells. This was significantly higher than the frequency of 1 SRC in 3.0 × 106 adult BM cells or 1 in 6.0 × 106 mobilized peripheral blood (PB) cells from normal donors. Mice transplanted with limiting numbers of SRC were engrafted with both lymphoid and multilineage myeloid human cells. This functional assay is currently the only available method for quantitative analysis of human hematopoietic cells with repopulating capacity. Both CB and mobilized PB are increasingly being used as alternative sources of hematopoietic stem cells in allogeneic transplantation. Thus, the findings reported here will have important clinical as well as biologic implications.


1995 ◽  
Vol 181 (1) ◽  
pp. 369-374 ◽  
Author(s):  
K J Grzegorzewski ◽  
K L Komschlies ◽  
S E Jacobsen ◽  
F W Ruscetti ◽  
J R Keller ◽  
...  

Administration of recombinant human interleukin 7 (rh)IL-7 to mice has been reported by our group to increase the exportation of myeloid progenitors (colony-forming unit [CFU]-c and CFU-granulocyte erythroid megakarocyte macrophage) from the bone marrow to peripheral organs (blood, spleen[s], and liver). We now report that IL-7 also stimulates a sixfold increase in the number of more primitive CFU-S day 8 (CFU-S8) and day 12 (CFU-S12) in the peripheral blood leukocytes (PBL) of mice treated with rhIL-7 for 7 d. Moreover, > 90% of lethally irradiated recipient mice that received PBL from rhIL-7-treated donor mice have survived for > 6 mo whereas none of the recipient mice that received an equal number of PBL from diluent-treated donors survived. Flow cytometry analysis at 3 and 6 mo after transplantation revealed complete trilineage (T, B, and myelomonocytic cell) repopulation of bone marrow, thymus, and spleen by blood-borne stem/progenitor cells obtained from rhIL-7-treated donor mice. Thus, IL-7 may prove valuable for mobilizing pluripotent stem cells with long-term repopulating activity from the bone marrow to the peripheral blood for the purpose of gene modification and/or autologous or allogeneic stem cell transplantation.


2002 ◽  
Vol 8 (5) ◽  
pp. 257-260 ◽  
Author(s):  
Juliet N Barker ◽  
Timothy P Krepski ◽  
Todd E DeFor ◽  
Stella M Davies ◽  
John E Wagner ◽  
...  

1993 ◽  
Vol 16 (5_suppl) ◽  
pp. 113-115 ◽  
Author(s):  
R. Miniero ◽  
U. Ramenghi ◽  
N. Crescenzio ◽  
L. Perugini ◽  
A. Busca ◽  
...  

Human umbilical cord blood as an alternative source of hematopoietic stem cells for bone marrow reconstitution, has recently been demonstrated to yield successful HLA-matched placental blood grafts in children. It has been shown that cord blood contains sufficient progenitor cells to effect hematological reconstitution. Since then, more than 25 cord blood stem cells (CBSCs) transplants have been performed worldwide for the treatment of a variety of malignant and nonmalignant diseases. The majority of the grafts performed thus far have utilized CBSCs from HLA-identical siblings. However, much of the interest in this setting is devoted to the potential use of CBSCs for HLA-mismatched and unrelated transplants. Preliminary results suggest that allorecognition and graft-versus-host disease may be less intense in CBSCs transplants than in recipients of similarly compatible bone marrow. This review summarizes the results and potential future applications of cord blood transplantation.


Sign in / Sign up

Export Citation Format

Share Document