scholarly journals AN APPROACH TO EVALUATION OF FREIGHT TRAINS BRAKING EFFICIENCY BY THE RESULTS OF EXPERIMENTAL STUDIES IN COMPLIANCE WITH HOST 34434-2018 REQUIREMENTS

2021 ◽  
pp. 140-163
Author(s):  
Oleksandr Safronov ◽  

The approach of experimental study of the freight trains braking efficiency using computer simulation based on the implementation of the simulation model in the form of a differential equation of the wagon motion during braking, is proposed. The methodology of experimental studies is based on universal formulas for power-law dependences of braking parameters. The braking efficiency is evaluated by the use of computer software packages written in VBA (Visual Basic for Application) in Excel. The software package al-lows you to increase the automation of testing, the accuracy of calculations, to reduce the time for testing, and also minimize the number of errors caused by the human factor. The presented methodology significantly extends the number of parameters of the braking process used to analyze the braking efficiency of a freight train based on the results of running braking tests: actual values of braking coefficients; braking distances of a freight train not only on the site, but also on normalized gradient descents for a given number of wagons in the train, taking into account the increase in the braking force along the wagons in the train formation; actual values of wheel and rail adhesion coefficients during braking; the deceleration of the freight wagon and the train during braking, as well as the braking time. Examples of computational and experimental studies of a freight train with tread brake are given. A comparative analysis of experimental and computational studies demonstrates sufficiently satisfactory matching of their results. Key words: freight train, braking distance, braking speed, braking coefficient, increase in braking force, mathematical model, trend line, braking wave.

2021 ◽  
Vol 13 (1) ◽  
pp. 78-86
Author(s):  
Alexander Nazarov ◽  
◽  
Vitalii Kashkanov ◽  
Ivan Nazarov ◽  
Yevhen Ivanchenko ◽  
...  

The article discusses a methodology for assessing the functional suitability of brake systems to change the braking path of passenger cars, taking into account various operating conditions. The goal is achieved by using the method of mathematical modeling of the emergency braking process, taking into account the possible operating conditions of cars performing emergency braking at certain initial speeds, in particular, exceeding 100 km / h. Based on the analysis of scientific sources, it has been established that the determination of the braking efficiency of a vehicle classically occurs on the verge of blocking all wheels with known methods of distributing braking forces between the axles of the vehicle. In this case, the standards set the maximum value of the minimum deceleration and braking distance. In addition, the jump in the maximum possible value of the braking force between the wheels of each axle makes it possible to compare it with the requirements of DSTU 3649: 2010, and the assessment of the magnitude of this jump for each braking of the car is to establish its functional suitability. As a result, according to the magnitude of the jump in the maximum possible value of the braking distance, the change in the maximum allowable braking force of the car sets, and according to the magnitude of its jump, it is possible to assess the functional suitability of its braking system. As a result, the use of expert information on the value of jumps in the maximum possible value of the braking force of a car, affecting the braking torques and braking coefficient, can reduce the amount of experimental research and significantly reduce the time to reach an objective decision on the functional suitability of the brake systems of operated cars. The paper presents the results of theoretical studies of passenger cars Chevrolet Aveo, Lada Priora and Forza with different loads, performing emergency braking at an initial speed of 40-150 km / h on a road with dry asphalt concrete. The boundaries of the coefficient of the relative change in the braking distance of the tested passenger car, at which it is possible to make a conclusion about the functional suitability of its braking system, have been established.


2019 ◽  
Vol 10 (2) ◽  
pp. 44 ◽  
Author(s):  
Gong ◽  
Qian ◽  
Ge ◽  
Wang

In order to improve the braking performance of electric vehicles, a novel brake-by-wire actuator based on an electro-magnetic linear motor was designed and manufactured. For the purpose of braking force regulation accuracy and high robust performance, the state observer and the anti-disturbance controller were designed in this paper after describing the actuator structure, braking principle, and mathematical model. The simulation and experimental results showed that the brake actuator responded rapidly, since its response time was only 15 ms. Compared to traditional PID (Proportion Integration Differentiation) methods, the controller proposed in this paper is able to regulate the braking force more precisely and has better anti-disturbance performance, thus the braking process can be accurately controlled according to the driver’s demand. The vehicle simulation results showed that the braking distance and braking time were shortened by 12.19% and 15.54%, respectively compared with those of the conventional anti-lock brake system (ABS) in the same braking conditions.


2013 ◽  
Vol 756-759 ◽  
pp. 4752-4757
Author(s):  
Zhi Wei Guan ◽  
Shao Hua Wang ◽  
Wei Qiang Liang ◽  
Ming Feng Zheng ◽  
Lin Wu ◽  
...  

In order to improve the impartiality and objectivity of judicial expertise, the key problems about traffic accident speed identification are analyzed and the speed of vehicle is calculated by using the braking performance test report with reference to the national standard and automobile theory. The automobile dynamics of driver braking process is analyzed, all kinds of key problems such as the braking distance, braking coordination time, braking speed, longitudinal sliding coefficient of adhesion are combined with the braking performance test report, and the method of determining the longitudinal sliding coefficient of adhesion is proposed, the instantaneous velocity before the collision is calculated. Finally, the method is used to calculate the speed of an actual case, and simulated in the software of PC-Crash, the results are consistent, verifying that the speed identification method is correct.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Daniel Varecha ◽  
Robert Kohar ◽  
Frantisek Brumercik

Abstract The article is focused on braking simulation of automated guided vehicle (AGV). The brake system is used with a disc brake and with hydraulic control. In the first step, the formula necessary for braking force at the start of braking is derived. The stopping distance is 1.5 meters. Subsequently, a mathematical model of braking is created into which the formula of the necessary braking force is applied. The mathematical model represents a motion equation that is solved in the software Matlab by an approximation method. Next a simulation is created using Matlab software and the data of simulation are displayed in the graph. The transport speed of the vehicle is 1 〖m.s〗^(-1) and the weight of the vehicle is 6000 kg including load. The aim of this article is to determine the braking time of the device depending from the input data entered, which represent the initial conditions of the braking process.


2020 ◽  
Vol 14 (1) ◽  
pp. 154-163
Author(s):  
Don Bum Choi ◽  
Rag-Gyo Jeong ◽  
Yongkook Kim ◽  
Jangbom Chai

Background: This paper describes the predictions and validation of the pneumatic emergency braking performance of a freight train consisting of a locomotive and 20 wagons, generally operated in Korea. It suggests the possibility of replacing the expensive and time-consuming train running tests with longitudinal train dynamic simulations. Methods: The simulation of longitudinal train dynamics of a freight train uses the time integration method of EN 14531. For reasonable simulation results, the characteristics of the train and brake equipment must be considered. For the train characteristics, specifications provided by the vehicle manufacturer are used. The braking characteristics are analyzed by friction coefficient tests and a braking pressure model. The friction coefficients of a locomotive and wagons are tested with a dynamo test bench and statistically expanded to account for variability. Freight trains should take into account the braking delay time. To reflect this in the simulation, the brake cylinder pressure pattern model uses pressures and exponential empirical equations measured at selective positions in a train of 50 vehicles. The simulation results are validated in comparison with those of the braking tests of a freight train consisting of 1 locomotive and 20 wagons. Results: The results of the longitudinal dynamics simulation show very similar results to the running test results based on the speed profile and braking distance. Conclusion: In particular, the statistical expansion method of the friction coefficient enables robust prediction of the distribution of the braking distance. The simulation can reduce or make up for costly and time-consuming repeated braking tests and reduce the risks that may arise during testing.


2020 ◽  
pp. 096228022097579
Author(s):  
Duncan T Wilson ◽  
Richard Hooper ◽  
Julia Brown ◽  
Amanda J Farrin ◽  
Rebecca EA Walwyn

Simulation offers a simple and flexible way to estimate the power of a clinical trial when analytic formulae are not available. The computational burden of using simulation has, however, restricted its application to only the simplest of sample size determination problems, often minimising a single parameter (the overall sample size) subject to power being above a target level. We describe a general framework for solving simulation-based sample size determination problems with several design parameters over which to optimise and several conflicting criteria to be minimised. The method is based on an established global optimisation algorithm widely used in the design and analysis of computer experiments, using a non-parametric regression model as an approximation of the true underlying power function. The method is flexible, can be used for almost any problem for which power can be estimated using simulation, and can be implemented using existing statistical software packages. We illustrate its application to a sample size determination problem involving complex clustering structures, two primary endpoints and small sample considerations.


2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987900 ◽  
Author(s):  
Shujun Li ◽  
Wenjun Meng ◽  
Yao Wang

The previous work of the authors indicated that the fluid–solid coupling effect of the magneto-rheological fluid and the brake disc is a necessary focus during braking process. In this study, a novel design of magneto-rheological fluid brake was proposed and studied theoretically and numerically, aiming to solve the prominent problem of heat dissipation, especially in the case of single emergency braking. First, based on the modified Bingham model, a parameter defined as the apparent equivalent viscosity was utilized to represent the relationship of magnetic field, flow field, and temperature field. The braking torque and the formula for calculating the impact factor of fluid–solid coupling employed for characterizing the associations among the thermal field and the stress field were established based on fluid–solid coupling. With a detailed explanation of simulation method, the distribution disciplinarian’s numerical simulation of each field was analyzed using COMSOL software. To validate the accuracy of the established model on the designed magneto-rheological fluid brake, the prototype was also manufactured, and results achieved experimentally which were measured on inertia test system of brake, for braking torque, motion parameters, and surface temperature in braking process, were compared with simulations. Simulation results manifested that the designed magneto-rheological fluid brake’s magnetic circuit structure is feasible based on magnetic induction intensity distribution. Finally, it has been shown that the simulations appear to be basically consistent with the experimental results, and the heat dissipation of the designed magneto-rheological fluid brake is partially improved. These results might contribute to the structure design, optimization, and improvement of magneto-rheological fluid products, extending the previous work on fluid–solid coupling analyses.


Sign in / Sign up

Export Citation Format

Share Document