scholarly journals Numerical and experimental studies on a novel magneto-rheological fluid brake based on fluid–solid coupling

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987900 ◽  
Author(s):  
Shujun Li ◽  
Wenjun Meng ◽  
Yao Wang

The previous work of the authors indicated that the fluid–solid coupling effect of the magneto-rheological fluid and the brake disc is a necessary focus during braking process. In this study, a novel design of magneto-rheological fluid brake was proposed and studied theoretically and numerically, aiming to solve the prominent problem of heat dissipation, especially in the case of single emergency braking. First, based on the modified Bingham model, a parameter defined as the apparent equivalent viscosity was utilized to represent the relationship of magnetic field, flow field, and temperature field. The braking torque and the formula for calculating the impact factor of fluid–solid coupling employed for characterizing the associations among the thermal field and the stress field were established based on fluid–solid coupling. With a detailed explanation of simulation method, the distribution disciplinarian’s numerical simulation of each field was analyzed using COMSOL software. To validate the accuracy of the established model on the designed magneto-rheological fluid brake, the prototype was also manufactured, and results achieved experimentally which were measured on inertia test system of brake, for braking torque, motion parameters, and surface temperature in braking process, were compared with simulations. Simulation results manifested that the designed magneto-rheological fluid brake’s magnetic circuit structure is feasible based on magnetic induction intensity distribution. Finally, it has been shown that the simulations appear to be basically consistent with the experimental results, and the heat dissipation of the designed magneto-rheological fluid brake is partially improved. These results might contribute to the structure design, optimization, and improvement of magneto-rheological fluid products, extending the previous work on fluid–solid coupling analyses.

2016 ◽  
Vol 28 (12) ◽  
pp. 1614-1626 ◽  
Author(s):  
Wan-Li Song ◽  
Dong-Heng Li ◽  
Yan Tao ◽  
Na Wang ◽  
Shi-Chao Xiu

The aim of this work is to investigate the effect of the small magnetorheological fluid gap on the braking performance of the magnetorheological brake. In this article, theoretical analyses of the output torque are given first, and then the operating principle and design details of the magnetorheological brake whose magnetorheological fluid gap can be altered are presented and discussed. Next, the magnetic circuit of the proposed magnetorheological brake is conducted and further followed by a magnetostatic simulation of the magnetorheological brakes with different sizes of fluid gap. A prototype of the magnetorheological brake is fabricated and a series of tests are carried out to evaluate the braking performance and torque stability, as well as the verification of the simulation results. Experimental results show that the braking torque increases with the increase in the current, and the difference for the impact of the fluid gap on braking performance is huge under different currents. The rules, which the experimental results show, have an important significance on both the improvement of structure design for magnetorheological brake and the investigation of the wear property under different fluid gaps.


2017 ◽  
Vol 17 (3) ◽  
pp. 125-134 ◽  
Author(s):  
Wojciech Sawczuk

AbstractDue to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Agata Strojny-Nędza ◽  
Katarzyna Pietrzak ◽  
Flavia Gili ◽  
Marcin Chmielewski

Abstract Copper–alumina composites of the interpenetrating networks type are interesting materials for many applications because of their properties. On the base of preliminary investigations and practical works, in order to obtain a material with high resistance to friction wear as well as good dissipation of heat generated during work, it was decided that a developed material would be prepared on the base of the Cu–Al2O3 composite, with a graded composition. In this paper, we present the developed method of manufacturing dense copper–alumina FGMs, using ceramic preform with a graded porosity infiltrated with molten copper. The article also presents the full characterization of the obtained materials and mainly the impact of microstructure on the useful properties. The produced gradient material of a Cu–Al2O3 brake disk underwent tribological tests under conditions resembling real conditions. These disks also went through a series of abrasive wear trials at different operation stages. In comparison with the reference material (i.e., grey cast iron), the obtained gradient materials are characterized by a lower degree of wear when retaining a similar coefficient of friction value due to the ceramic phase addition. Additionally, it was found that using the copper-based gradient material guarantees faster heat dissipation from the contact area.


Author(s):  
Zhuo Wang ◽  
Seung-Bok Choi

The aim of this work is to propose a new type of anti-lock braking system (ABS) using a magneto-rheological (MR) brake and validate its effectiveness by implementing a fuzzy logic sliding mode (FLSM) controller via the hardware-in-the-loop-simulation (HILS). Firstly, a quarter vehicle model integrated with the tire model is established to analyze control performance of MR brake during the braking process under different road conditions. Secondly, a disc type MR brake is designed on the basis of a mathematical model and the field-dependent braking torque is measured. Subsequently, in order to investigate the control performance of the proposed ABS, the software model is combined with the hardware configuration which is built by Matlab/Simulink. It is shown via HILS that the proposed ABS associated with the FLSM controller can provide high response speed and excellent braking control effect. In this work, control responses from the FLSM controller are also compared with those achieved from the conventional sliding mode controller in order to emphasize the significance of the control strategy to enhance ABS performances.


2015 ◽  
Vol 789-790 ◽  
pp. 430-435
Author(s):  
Li Xin Wang ◽  
Ya Yan Gao ◽  
Li Qiang Peng ◽  
Li Gang Zhai

The failure of brake performance, which is caused by thermal recession under the emergency brake, results in traffic accident frequently. Based on excellent wear-resisting properties of locust’s non-smooth surface structure, bionic brake disc with special surface micro-structure was designed. According to the thermal analysis theory, transient temperature field analysis of the bionic brake disc during the braking process under different initial velocity was analyzed. The results showed that bionic brake disc has excellent heat dissipation ability, which is beneficial to improve the brake performance. The non-smooth surface can store air and dissipate heat, thus reducing the thermal fatigue and thermal wear caused by temperature rise. This research provides a theoretical basis for designing bionic brake discs with excellent heat dissipation performance.


2013 ◽  
Vol 405-408 ◽  
pp. 1791-1794
Author(s):  
Da Wei Wang ◽  
Andreas Schacht ◽  
Stefan Schmidt ◽  
Markus Oeser ◽  
Bernhard Steinauer ◽  
...  

A newly developed skid resistance measurement system ViaFriction is studied, which can detect the skid resistance under conditions with a variable slip rate, just like the braking process with an anti-lock braking system (ABS). Until now there is still no evaluation framework on the testing results from this test system. In the scope of this paper, the impact from the temperature of the ambient air, the road surface, the tire and the water for the test as well as the influence of the driving speed of the test vehicle on the testing results of the ViaFriction was identified and transferred to a correction function. This total correction algorithm for the measurement results of the ViaFriction allows a comparative analysis of the friction coefficients at different speeds and under different testing temperatures.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1798 ◽  
Author(s):  
Xing ◽  
Du ◽  
He ◽  
Zhao ◽  
Zhang ◽  
...  

The impact resistance of fiber-reinforced polymer composites is a critical concern for structure design in aerospace applications. In this work, experiments were conducted to evaluate the impact performance of four types of composite panels, using a gas-gun test system. Computational efficient finite element models were developed to model the high-speed ballistic impact behavior of laminate and textile composites. The models were first validated by comparing the critical impact threshold and the failure patterns against experimental results. The damage progression and energy evolution behavior were combined to analyze the impact failure process of the composite panels. Numerical parametric studies were designed to investigate the sensitivity of impact resistance against impact attitude, including impact deflection angles and projectile deflection angles, which provide a comprehensive understanding of the damage tolerance of the composite panels. The numerical results elaborate the different impact resistances for laminate and textile composites and their different sensitivities to deflection angles.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042199848
Author(s):  
Rui-Jun Zhang

A new type of built-in composite electromagnetic and frictional braking structural scheme and its corresponding coordinated control strategy were proposed to enhance the braking effects for the electric vehicle. Fuzzy control theory was applied to design the coordinated control strategy for the electromagnetic and frictional braking system. In comparison to lower braking strength and moderate braking strength, the slip ratio of high braking strength was maintained at near 0.15. It effectively avoided the wheel getting locked and provided relatively large braking torque in the process of braking. The integrated system using a fuzzy control strategy can effectively shorten the braking time, enhance the braking safety in the braking process.


Author(s):  
P. Vikulin ◽  
K. Khlopov ◽  
M. Cherkashin

Enhancing water purification processes is provided by various methods including physical ones, in particular, exposure to ultrasonic vibrations. The change in the dynamic viscosity of water affects the rate of deposition of particles in the aquatic environment which can be used in natural and wastewater treatment. At the Department Water Supply and Wastewater Disposal of the National Research Moscow State University of Civil Engineering experimental studies were conducted under laboratory conditions to study the effect of ultrasound on the change in the dynamic viscosity of water. A laboratory setup has been designed consisting of an ultrasonic frequency generator of the relative intensity, a transducer (concentrator) that transmits ultrasonic vibrations to the source water, and sonic treatment tanks. Experimental studies on the impact of the ultrasonic field in the cavitation mode on the dynamic viscosity of the aqueous medium were carried out the exposure time was obtained to achieve the maximum effect.Интенсификация процессов очистки воды осуществляется с помощью различных методов, в том числе и физических, в частности воздействием ультразвуковых колебаний. Изменение динамической вязкости воды влияет на скорость осаждения частиц в водной среде, что может быть использовано в процессах очистки природных и сточных вод. На кафедре Водоснабжение и водоотведение Национального исследовательского Московского государственного строительного университета в лабораторных условиях проведены экспериментальные исследования по изучению влияния ультразвука на изменение динамической вязкости воды. Разработана схема лабораторной установки, состоящая из генератора ультразвуковых частот с соответствующей интенсивностью, преобразователя (концентратора), передающего ультразвуковые колебания в исходную воду, и емкости для озвучивания. Выполнены экспериментальные исследования по влиянию ультразвукового поля в режиме кавитации на динамическую вязкость водной среды, получено время экспозиции для достижения максимального эффекта.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Sugunarani S ◽  
Santhosh V

This work deals with the analysis of heat generation and dissipation in the disc brake of a car during braking and the following release period by using computer-aided engineering software for three different materials of the rotor disc and brake pad. The objective of this work is to analyze the temperature distribution of rotor disc during operation using COMSOL Multiphysics. The work uses the finite element analysis techniques to calculate and predict the temperature distribution on the brake disc and to identify the critical temperature of the brake rotor disc. Conduction, convection and radiation of heat transfer have been analyzed. The results obtained from the analysis indicates that different material on the same retardation of the car during braking shows different temperature distribution. A comparative study was made between grey cast iron (GCI), Aluminium Metal Matrix Composite (AMMC), Alloy steel materials are used for brake disc and the best material for making brake disc based on the rate of heat dissipation have been suggested.


Sign in / Sign up

Export Citation Format

Share Document