Influence of enamel acid-etching on mechanical properties and nanoleakage of resin composite restorations after thermomechanical aging

Author(s):  
Erick Kamiya Coppini
2017 ◽  
Vol 16 ◽  
pp. 1-10 ◽  
Author(s):  
Erick Kamiya Coppini ◽  
Lúcia Trazzi Prieto ◽  
Josué Junior Araujo Pierote ◽  
Cíntia Tereza Pimenta de Araújo ◽  
Dayane Carvalho Ramos Salles de Oliveira ◽  
...  

The aim of this study was to evaluate how acid-etching of the cavosurface enamel in Class I resin composite restorations influences the bond strength to the pulpal wall and the restoration, Knoop microhardness and nanoleakage after thermomechanical aging. For this research 76 fresh human molars were selected and restored with Silorane or Clearfil SEBond/Z350XT composite divided in 4 groups (Silorane system restored with or without enamel cavosurface acid-etching and Clearfil SEBond/Z350XT with or without enamel cavosurface acid-etching). To induce artificial aging, samples were subjected to thermomechanical cycling through 200,000 and thermal cycling between 5 and 55 °C with 30 second filling and 15-second drainage steps. Microhardness and microtensile bond strength were evaluated in 32 teeth (n=8) each and nanoleakage evaluation was performed in 12 teeth (n=3). Samples restored by Clearfil SEBond/Z350 XT without cavosurface acid-etching showed significantly lower microtensile bond strength results. The resin composite Z350XT presented higher values of Knoop microhardness. It was observed little or no infiltration for Silorane groups and moderate infiltration for Clearfil SE Bond groups. Acid-etching of the cavosurface enamel during restoration procedure with Clearfil Se Bond resulted in a stronger bond after thermomechanical cycling. Silorane groups showed less infiltration than Clearfil SE Bond groups.


2013 ◽  
Vol 38 (1) ◽  
pp. 63-72 ◽  
Author(s):  
M Özcan ◽  
G Pekkan

ABSTRACT Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration: four seconds in circular motion). After conditioning protocols, the repair resin was adhered to the substrate surfaces using transparent polyethylene molds (diameter: 3.6 mm) incrementally and photo-polymerized. The substrate-adherend combinations were as follows: AS-AS, G-G, AS-G. Shear force was applied to the adhesive interface in a Universal Testing Machine (crosshead speed: 1 mm/min). The types of failures were further evaluated and categorized as follows: 1) cohesive in the composite substrate and 2) adhesive at the interface. Bond strength values (MPa) were statistically analyzed using two-way analysis of variance and least significant difference post hoc tests (α=0.05). Significant effects of the adhesion strategy (p=0.006) and the composite type (p=0.000) were found. Interaction terms were not significant (p=0.292). Regardless of the substrate-adherend combination, protocol 1 (17–22 MPa) showed significantly higher results than did protocols 2 (15–17 MPa) and 3 (11–17 MPa) (p=0.028, p=0.002, respectively). The highest results were obtained from the G-G combination after all three protocols (17–22 MPa). The incidence of cohesive failures was more common when the substrate and the adherend were the same composite type (AS-AS: 87.5%, 87.5%, 75%; G-G: 100%, 75%, 50% for protocols 1, 2, and 3, respectively). When substrate and adherend were used interchangeably, adhesive failures were more frequent (25%, 50%, and 100% for protocol 1, 2, and 3, respectively). When the substrate and the adherend are of the same type, greater repair strength could be expected. In the repair of composites next to the dentin, depending on the composite type, conditioning the composite with silica coating and silanization after etching the dentin adds to the repair strength compared to the results obtained with silane application only.


2010 ◽  
Vol 35 (6) ◽  
pp. 682-688 ◽  
Author(s):  
F. Shafiei ◽  
M. Motamedi ◽  
A. A. Alavi ◽  
B. Namvar

Clinical Relevance The effect of oxalate desensitizer application after acid etching on the dentinal marginal sealing ability of resin composite restorations may be adhesive-specific.


ORL ro ◽  
2018 ◽  
Vol 4 (41) ◽  
pp. 45
Author(s):  
Irina-Maria Gheorghiu ◽  
Loredana Mitran ◽  
Mihai Mitran ◽  
Anca-Nicoleta Temelcea ◽  
Sânziana Scărlătescu ◽  
...  

Author(s):  
Ayse Ruya Yazici ◽  
Zeynep Bilge Kutuk ◽  
Esra Ergin ◽  
Sevilay Karahan ◽  
Sibel A. Antonson

1989 ◽  
Vol 24 (6) ◽  
pp. 2245-2249 ◽  
Author(s):  
Masaki Shimomura ◽  
Yoji Maeda ◽  
Yoshikazu Tanabe

2006 ◽  
Vol 31 (6) ◽  
pp. 688-693 ◽  
Author(s):  
B. A. C. Loomans ◽  
N. J. M. Opdam ◽  
F. J. M. Roeters ◽  
E. M. Bronkhorst ◽  
R. C. W. Burgersdijk

Clinical Relevance When placing a Class II resin composite restoration, the use of sectional matrix systems and separation rings to obtain tight proximal contacts is recommended.


2016 ◽  
Vol 35 (3) ◽  
pp. 418-424 ◽  
Author(s):  
Akimasa TSUJIMOTO ◽  
Wayne W. BARKMEIER ◽  
Toshiki TAKAMIZAWA ◽  
Mark A. LATTA ◽  
Masashi MIYAZAKI

2014 ◽  
Vol 989-994 ◽  
pp. 177-180
Author(s):  
Hao Yang ◽  
Jian Hua Zhang ◽  
Guo Yan Sun ◽  
Yi Zhang

For the characteristic that the mechanical properties of resin composite are lower than cast iron, steel fibers are used to improve its properties in this paper. A weak interfacial bonding strength between steel fibers and resin indicates that steel fibers’ property cannot perform well in the polymer. In order to improve the interfacial bonding strength, four methods of surface treatment, phosphating, acid pickling, oxidation, and coupling are applied to steel fibers, and the corresponding pull-off tests are carried out to compare with untreated steel fibers. Research results show that the maximum interfacial bonding strength is increased by 45.1% after coupling treatment.


Sign in / Sign up

Export Citation Format

Share Document