Effect of Fiber’s Surface Pretreatment on the Interfacial Bonding Strength between Steel Fiber and Resin

2014 ◽  
Vol 989-994 ◽  
pp. 177-180
Author(s):  
Hao Yang ◽  
Jian Hua Zhang ◽  
Guo Yan Sun ◽  
Yi Zhang

For the characteristic that the mechanical properties of resin composite are lower than cast iron, steel fibers are used to improve its properties in this paper. A weak interfacial bonding strength between steel fibers and resin indicates that steel fibers’ property cannot perform well in the polymer. In order to improve the interfacial bonding strength, four methods of surface treatment, phosphating, acid pickling, oxidation, and coupling are applied to steel fibers, and the corresponding pull-off tests are carried out to compare with untreated steel fibers. Research results show that the maximum interfacial bonding strength is increased by 45.1% after coupling treatment.

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040014
Author(s):  
Yun-Hae Kim ◽  
Kyo-Moon Lee ◽  
Seong-Jae Park ◽  
Kyung-In Jo ◽  
Soo-Jeong Park

Prepreg technology generates air pockets at the interface of laminates under heating and pressurization. The air pockets cause defects in the through-thickness direction. This includes poor adhesion between layers, which degrades material properties. Therefore, in this study, cryogenic mechanical properties were compared to obtain uniform properties by using prepreg laminated and resin film infused glass fiber reinforced plastic (GFRP) composites (“PP-only” and “RF-only”, respectively) while maintaining the constituent contents of the fiber and polymer. Moreover, stepped repair was applied to extend the life of composites. The results demonstrated that the stiffness of the composites improved, and the brittleness increased in cryogenic environments. In the case of PP-only, numerous voids were observed inside the polymer, which showed higher bending strength than RF-only; however, it exhibited significantly lower interfacial bonding strength. When applied to secondary bonding of stepped repair, RF-only as repair layers showed high strength recovery rate in homogeneous materials, and not in heterogeneous materials. In contrast, the high strength PP-only as a parent material and RF-only as repair layers showed relatively good interfacial bonding strength due to primary damage in the PP of a parent material. Hence, the RF-only can be considered useful as a repair material.


2000 ◽  
Vol 654 ◽  
Author(s):  
Youngman Kim ◽  
Jong-Hoon Jeong ◽  
Jae-Chul Lee

AbstractMetal matrix composites (MMC's) are known to have wide applications in parts of transportation devices such as automobiles and aircraft. Al matrix composites using SiC particles as reinforcements are especially spotlighted because of low cost, superior specific modulus, specific strength, wear resistance and high temperature stability. However, Al4C3 formed by the interfacial reaction between Al and SiC weakens the interfacial bonding strength. It is also known to be unstable in the water-soluble atmosphere.In this study, the passive oxidation of SiC powder is used as protective layer against the reaction between the Al matrix and the SiC particle. We investigated the changes in interfacial product of the composites and mechanical properties such as interfacial bonding strength, and tensile strength in terms of the oxidized layer thickness of the reinforcement.


Sign in / Sign up

Export Citation Format

Share Document