scholarly journals A New Method to Estimate Peak Signal to Noise Ratio for Least Significant Bit Modification Audio Steganography

2022 ◽  
Vol 30 (1) ◽  
pp. 497-511
Author(s):  
Muhammad Harith Noor Azam ◽  
Farida Ridzuan ◽  
M Norazizi Sham Mohd Sayuti

Audio steganography is implemented based on three main features: capacity, robustness, and imperceptibility, but simultaneously implementing them is still a challenge. Embedding data at the Least Significant Bit (LSB) of the audio sample is one of the most implemented audio steganography methods because the method will give high capacity and imperceptibility. However, LSB has the lowest robustness among all common methods in audio steganography. To cater to this problem, researchers increased the depth of the embedding level from fourth to sixth and eighth LSB level to improve its robustness feature. However, consequently, the imperceptibility feature, which is commonly measured by Peak Signal to Noise Ratio (PSNR), is reduced due to the trade-off between imperceptibility and robustness. Currently, the lack of study on the estimation of the PSNR for audio steganography has caused the early assessment of the imperceptibility-robustness trade-off difficult. Therefore, a method to estimate PSNR, known as PSNR Estimator (PE), is introduced to enable early evaluation of imperceptibility feature for each stego-file produced by the audio steganography, which is important for the utilisation of embedding. The proposed PE estimates the PSNR based on the pattern collected from the embedment at different levels. From the evaluation, the proposed method has 99.9% of accuracy in estimating PSNR values at different levels. In comparison with the Mazdak Method, the proposed method performs better in all situations. In conclusion, the proposed PE can be used as a reference for embedding and further reducing the calculation complexity in finding the feasible value to minimise the trade-off between robustness and imperceptibility.

2020 ◽  
pp. 147592172095019
Author(s):  
Yuan Liu ◽  
Peter B. Nagy ◽  
Peter Cawley

This article presents a design procedure for structural health monitoring systems based on bulk wave ultrasonic sensors for structures fabricated from polycrystalline materials. When designing a monitoring system, maximum coverage per transducer is a general requirement in order for the system to be economic. For coarse-grained polycrystalline materials, monitoring is often made challenging by low signal-to-noise ratios caused by grain scattering. Therefore, when designing a monitoring system for these materials, in addition to the economic requirement, it needs to be ensured that an adequate signal-to-noise ratio can be obtained throughout the monitoring volume. This typically introduces a trade-off between volume coverage per transducer and sensitivity that must be investigated. In this article, this trade-off is studied and a methodology using signal-to-noise maps is presented to design the system, that is, choose the optimal transducer parameters and placement. First, a combined analytical and numerical approach is used to generate a signal-to-noise map. Then, the influence of various factors on signal-to-noise ratio is investigated. Finally, two representative examples, with different criteria, are given to illustrate the methodology. In one example, the full surface area of the testpiece is covered with transducers and the optimum gives the deepest coverage. The other one aims to achieve the minimum fractional surface area that has to be covered with transducers to monitor a narrow depth range far from the surface, which has a potential application in weld monitoring. Results show that the optimum is likely to be at much lower frequency than typically used in inspection, as tracking signals with time gives sensitivity gains. Experiments were carried out to illustrate that higher volume coverage can be obtained at lower frequencies.


2012 ◽  
Vol 68 (6) ◽  
pp. 1983-1993 ◽  
Author(s):  
Esben Plenge ◽  
Dirk H. J. Poot ◽  
Monique Bernsen ◽  
Gyula Kotek ◽  
Gavin Houston ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 255
Author(s):  
Garno Garno ◽  
Riza Ibnu Adam

Maraknya kasus pencurian data menyebabkan sistem keamanan pesan harus ditingkatkan. Salah satu cara untuk mengamankan pesan adalah dengan memasukkan pesan ke dalam gambar digital. Penelitian ini bertujuan untuk meningkatkan kualitas gambar digital dalam sistem keamanan pesan tersembunyi. Teknik yang digunakan untuk keamanan pesan adalah steganografi. Cover image akan dikonversi menjadi bit piksel dalam domain spasial. Cover image digunakan dalam bentuk gambar digital dengan format .jpg. Teknik meningkatkan kualitas dan kapasitas gambar digital dilakukan dengan menambahkan dan meningkatkan bit piksel menggunakan metode interpolasi Cubik B-Spline. Cover image yang telah di interpolasi, kemudian disisipi pesan menggunakan metode least significant bit (LSB) untuk memperoleh stegoimage. Pesan yang diselipkan berbentuk file .doc, .docx, .pdf, .xls, .rar, .iso dan .zip dengan ukuran berbeda-beda kapasitasnya. Teknik uji dibuat dengan bantuan perangkat lunak MATLAB versi 2017a. Penelitian melakukan uji dengan mengukur nilai kualitas penyamaran dari stegoimage menggunakan Peak Signal to Noise Ratio (PSNR) dengan rata-rata perolehan stegoimage terhadap Original image 29.06 dB dan stegoimage terhadap Image interpolation 64.34 dB dan uji mean squared error (MSE) dengan rata-rata perolehan 97.54 dB pada Image interpolation terhadap original image dan 97.55 dB pada stegoimage terhadap original image, 0.13 dB nilai MSE stegoimage terhadap Image interpolation. Hasil uji pada penelitian dengan proses interpolasi pada coverimage dengan Cubic B-Spline mempengaruhi terhadap nilai samar atau Nilai PSNR.


2021 ◽  
Vol 13 (1) ◽  
pp. 67-77
Author(s):  
Guntoro Barovih ◽  
Fadhila Tangguh Admojo ◽  
Yoda Hersaputra

A message is a form of conveying information. Various ways are used to secure the information conveyed in the form of messages either in encrypted form or in the form of applying a password in the message. Messages can also be encrypted and embedded in other media such as images (steganography). This research aimed to insert a message into the form of an image by combining the Modified Least Significant Bit (MLSB) method in encrypting messages and reshape modification technique to determine at which position the message encryption will be embedded in the image. Tests were carried out to obtain the quality of the encryption process using the parameters of Fidelity, mean square error, peak signal to noise ratio, testing on file type, robustness, and comparison of message contents. The results of the tests showed that the files that can be used are files with the image file type in the lossless compression category, the rotation can be done at 90, 180, 270 without destroying the message in it, and changing the pixel in the image file will destroy the message inside


Author(s):  
R. SHANTHA SELVA KUMARI ◽  
V. SADASIVAM

In this paper, an off-line double density discrete wavelet transform based de-noising and baseline wandering removal methods are proposed. Different levels decomposition is used depending upon the noise level, so as to give a better result. When the noise level is low, three levels decomposition is used. When the noise level is medium, four levels decomposition is used. When the noise level is high, five levels decomposition is used. Soft threshold technique is applied to each set of wavelet detail coefficients with different noise level. Donoho's estimator is used as a threshold for each set of wavelet detail coefficients. The results are compared with other classical filters and improvement of signal to noise ratio is discussed. Using the proposed method the output signal to noise ratio is 19.7628 dB for an input signal to noise ratio of -7.11 dB. This is much higher than other methods available in the literature. Baseline wandering removal is done by using double density discrete wavelet approximation coefficients of the whole signal. This is an unsupervised method allowing the process to be used in off-line automatic analysis of electrocardiogram. The results are more accurate than other methods with less effort.


Author(s):  
M. Priyadharshni ◽  
S. Kumaravel

Approximate computing is the perfect way for error resilient applications with progress in speed and power but tradeoff with computational accuracy. In this paper, Imprecise Multipliers (IMs) are realized by segregating the partial products into two segments. The most significant bit (MSB) segment is accumulated as per Dadda tree structure and the least significant bit (LSB) segment is accumulated by approximate technique. The proposed Imprecise Multipliers, namely [Formula: see text] and [Formula: see text] are realized using Verilog HDL and simulated using TSMC 65[Formula: see text]nm process. For sake of comparison, the proposed multipliers [Formula: see text] and [Formula: see text] are compared with existing approximate multipliers. From the reported results, it may be noted that [Formula: see text] performs better in terms of area–delay product, power–delay product. While [Formula: see text] achieves a higher peak signal-to-noise ratio (PSNR) among all the multipliers existing in the literature.


Author(s):  
S. R. Heister ◽  
V. V. Kirichenko

Introduction. The digital representation of received radar signals has provided a wide range of opportunities for their processing. However, the used hardware and software impose some limits on the number of bits and sampling rate of the signal at all conversion and processing stages. These limitations lead to a decrease in the signal-to-interference ratio due to quantization noise introduced by powerful components comprising the received signal (interfering reflections; active noise interference), as well as the attenuation of a low-power reflected signal represented by a limited number of bits. In practice, the amplitude of interfering reflections can exceed that of the signal reflected from the target by a factor of thousands.Aim. In this connection, it is essential to take into account the effect of quantization noise on the signal-tointerference ratio.Materials and methods. The article presents expressions for calculating the power and power spectral density (PSD) of quantization noise, which take into account the value of the least significant bit of an analog-to-digital converter (ADC) and the signal sampling rate. These expressions are verified by simulating 4-, 8- and 16-bit ADCs in the Mathcad environment.Results. Expressions are derived for calculating the quantization noise PSD of interfering reflections, which allows the PSD to be taken into account in the signal-to-interference ratio at the output of the processing chain. In addition, a comparison of decimation options (by discarding and averaging samples) is performed drawing on the estimates of the noise PSD and the signal-to-noise ratio.Conclusion. Recommendations regarding the ADC bit depth and sampling rate for the radar receiver are presented.


2020 ◽  
Vol 4 (3) ◽  
pp. 454-461
Author(s):  
Hermansa ◽  
Rusydi Umar ◽  
Anton Yudhana

Message security is very important now. Because security is part of the privacy of someone who wants to protect messages from those who do not have the right to read or receive them. The method used for securing information messages with message encryption and decryption techniques is the Playfair Cipher algorithm combined with the Least Significant Bit (LSB) method. In this study it was found that the Playfair Cipher algorithm is quite safe in implementing cryptographic encryption or ciphertext because the playfair cipher has a level of appearance of letters that is so difficult to predict so that the ciphertext becomes a randomized collection of data. For the Least Significant Bit (LSB) steganography method in the insertion of a secret or embedded message it is difficult to guess in plain view the changes that occur between before and after the image is inserted are not too significant. Also see the value of the Peak-Signal-to-Noise ratio or PSNR can still be considered good quality due to> 30 decibels (dB). So the final result of the combination of the Playfair Cipher algorithm with the Least Significant Bit (LSB) method is quite good in securing messages.


Sign in / Sign up

Export Citation Format

Share Document