scholarly journals Classification of Mixed Odors Using A Layered Neural Network

2017 ◽  
pp. 41-48
Author(s):  
Sigeru Omatu

Odor classification has been forcused due to one of five senses of human being. If we could establish the odor classification technology, we would expect various new technology since human being requires five sences to acheive higher quality information processing and sophistcated decision making. For example, we could expect the odor classification and odor synthesis, which enable us to achieve odor communication technology. Furthermore, the odor classification would be applicable to keep the society safe by detecting the dangerous odors and to make our life more satisfactory by using additional odor information. In this paper we develop an electronic nose using a neural network. The neural network is a multi-layered neural network based on the gradient method. After classifying the various odors, we consider the classification in case that mixed odors are measured. To improve the classification accuracy we adopt a genetic algorithm to find a reduction factor to separate two mixed odors.

1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2011 ◽  
Vol 90-93 ◽  
pp. 2875-2880
Author(s):  
Ming Ming Li ◽  
Jian Gong Chen ◽  
Yong Xing Zhang

Based on the two-dimensional Direct Linear Transformation (DLT) principle of close-range digital photogrammetry and mathematical principle of the linear neuron, the equivalent relationship between linear neural network and the two-dimensional DLT of close-range digital photogrammetry is discussed. A neural network with 2 linear neurons, 6 input parameters and 2 output parameters is established to simulate the two-dimensional DLT. The network can be trained using a set of grid points in the control coordinate system with known world coordinates and pixel coordinates. The weights and biases of trained network contain camera interior and exterior parameters. A new digital photographic technique is put forward combined camera self-calibration based on neural network with non-linear pixel coordinates correction of lens distortion. The indoor survey test indicates that measurement is more accuracy. Meanwhile, the new technology is successfully used in crack monitor of a bridge pier.


Author(s):  
Mohd Azlan Abu ◽  
Syazwani Rosleesham ◽  
Mohd Zubir Suboh ◽  
Mohd Syazwan Md Yid ◽  
Zainudin Kornain ◽  
...  

<span>This paper presents the classification of EMG signal for multiple hand gestures based on neural network. In this study, the Electromyography is used to measure the muscle cell’s electrical activities which is commonly represented in a function time. Every muscle has their own signals, which was produced in every movement. Surface electromyography (sEMG) is used as a non-invasive technique for acquiring the EMG signal. The development of sensors’ detection and measuring the EMG have been improved and have become more precise while maintaining a small size. In this paper, the main objective is to identify the hand gestures based on: (1) Cylindrical Grasp, (2) Supination (Twist Left), (3) Pronation (Twist Right), (4) Resting Hand and (5) Open Hand that are predefined by using Arduino IDE, CoolTerm software and Microsoft Excel before using artificial neural network for classifying purposes in MATLAB. Finally, the extraction of the EMG patterns for each movement went through features extraction of the signals which is used to train the classifier in MATLAB to classify signals in the neural network. The features extracted are using mean absolute value (MAV), median, waveform length (WL) and root mean square (RMS). The Artificial Neural Network (ANN) produced accuracy of 80% for training and testing for 10 hidden neurons layer.</span>


2021 ◽  
Vol 2131 (3) ◽  
pp. 032084
Author(s):  
N E Babushkina ◽  
A A Lyapin

Abstract The article sets the task of classifying various materials and determining their belonging to a specified group using a recurrent neural network. The practical significance of the article is to obtain the results of the neural network, confirming the possibility of classifying materials by the hardness parameter using a neural network. As part of the study, a number of experimental measurements were carried out. The structure of the neural network and its main components are described. The statistical parameters of the experimental data are estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco J. Bravo Sanchez ◽  
Md Rahat Hossain ◽  
Nathan B. English ◽  
Steven T. Moore

AbstractThe use of autonomous recordings of animal sounds to detect species is a popular conservation tool, constantly improving in fidelity as audio hardware and software evolves. Current classification algorithms utilise sound features extracted from the recording rather than the sound itself, with varying degrees of success. Neural networks that learn directly from the raw sound waveforms have been implemented in human speech recognition but the requirements of detailed labelled data have limited their use in bioacoustics. Here we test SincNet, an efficient neural network architecture that learns from the raw waveform using sinc-based filters. Results using an off-the-shelf implementation of SincNet on a publicly available bird sound dataset (NIPS4Bplus) show that the neural network rapidly converged reaching accuracies of over 65% with limited data. Their performance is comparable with traditional methods after hyperparameter tuning but they are more efficient. Learning directly from the raw waveform allows the algorithm to select automatically those elements of the sound that are best suited for the task, bypassing the onerous task of selecting feature extraction techniques and reducing possible biases. We use publicly released code and datasets to encourage others to replicate our results and to apply SincNet to their own datasets; and we review possible enhancements in the hope that algorithms that learn from the raw waveform will become useful bioacoustic tools.


Author(s):  
Krasimir Ognyanov Slavyanov

This article offers a neural network method for automatic classification of Inverse Synthetic Aperture Radar objects represented in images with high level of post-receive optimization. A full explanation of the procedures of two-layer neural network architecture creating and training is described. The classification in the recognition stage is proposed, based on several main classes or sets of flying objects. The classification sets are designed according to distinctive specifications in the structural models of the aircrafts. The neural network is experimentally simulated in MATLAB environment. Numerical results of the experiments carried, prove the correct classification of the objects in ISAR optimized images.


Author(s):  
L. Xue ◽  
C. Liu ◽  
Y. Wu ◽  
H. Li

Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.


2019 ◽  
Vol 21 (9) ◽  
pp. 681-692
Author(s):  
Luis Francisco Barbosa-Santillán ◽  
María de los Angeles Calixto-Romo ◽  
Juan Jaime Sánchez-Escobar ◽  
Liliana Ibeth Barbosa-Santillán

Aim and Objective: A common method used for massive detection of cellulolytic microorganisms is based on the formation of halos on solid medium. However, this is a subjective method and real-time monitoring is not possible. The objective of this work was to develop a method of computational analysis of the visual patterns created by cellulolytic activity through artificial neural networks description. Materials and Methods: Our method learns by an adaptive prediction model and automatically determines when enzymatic activity on a chromogenic indicator such as the hydrolysis halo occurs. To achieve this goal, we generated a data library with absorbance readings and RGB values of enzymatic hydrolysis, obtained by spectrophotometry and a prototype camera-based equipment (Enzyme Vision), respectively. We used the first part of the library to generate a linear regression model, which was able to predict theoretical absorbances using the RGB color patterns, which agreed with values obtained by spectrophotometry. The second part was used to train, validate, and test the neural network model in order to predict cellulolytic activity based on color patterns. Results: As a result of our model, we were able to establish six new descriptors useful for the prediction of the temporal changes in the enzymatic activity. Finally, our model was evaluated on one halo from cellulolytic microorganisms, achieving the regional classification of the generated halo in three of the six classes learned by our model. Conclusion: We assume that our approach can be a viable alternative for high throughput screening of enzymatic activity in real time.


Author(s):  
Brijesh Verma ◽  
Siddhivinayak Kulkarni

This chapter introduces neural networks for Content-Based Image Retrieval (CBIR) systems. It presents a critical literature review of both the traditional and neural network based techniques that are used in retrieving the images based on their content. It shows how neural networks and fuzzy logic can be used in interpretation of queries, feature extraction and classification of features by describing a detailed research methodology. It investigates a neural network based technique in conjunction with fuzzy logic to improve the overall performance of the CBIR systems. The results of the investigation on a benchmark database with a comparative analysis are presented in this chapter. The methodologies and results presented in this chapter will allow researchers to improve and compare their methods and it will also allow system developers to understand and implement the neural network and fuzzy logic based techniques for content based image retrieval.


Sign in / Sign up

Export Citation Format

Share Document