Balancing Fisheries Management and Water Uses for Impounded River Systems

<em>Abstract</em>.—While processes of depositional filling and ecological succession in natural lakes have been well described, these concepts are relatively new and seldom applied to reservoirs, especially at the landscape scale. However, ecological time has been sufficient to allow us to see successional processes in many reservoir systems. Illustrative of such processes, Lake Texoma is a 36,000-ha reservoir located in southern Oklahoma and northern Texas, and patterns of depositional filling and subsequent processes are apparent in the up-lake ends (there are two large-river tributaries) of this system. Completed in 1944, Lake Texoma has a drainage area of more than100,000 km2, most of which is highly erodable agricultural lands. We used historic aerial photographs, geographic information systems technology, and field measurements to examine a variety of surface and habitat features and analyzed experimental gill-net samples using ordination techniques to characterize the fish communities in portions of the reservoir most affected by sedimentation. Extensive sedimentation and accretion of sediments above water level has effectively resulted in surface area reduction, cove isolation, fragmentation of lacustrine habitats, morphometric changes, and establishment of terrestrial vegetation on newly deposited lands. Most notably, sedimentation has led to the development of linear bars of deposition above normal pool elevation that have blocked mouths of coves, bisected large areas of the reservoir, and fragmented several pools. In our study site alone, 332 ha (surface area) of reservoir has experienced accretion of land above the water level. Reservoir fragments had lower shoreline development values (mean = 2.21) than comparable control sites (mean = 3.39). Depositional shorelines associated with sedimentation exhibited lower gradients than nondepositional shorelines (mean = 2.0% versus 4.2%, respectively), and habitat heterogeneity was lower along depositional shorelines than along nondepositional shorelines. Fish communities in isolated reservoir fragments appeared to be distinct from fish communities in nonfragmented habitats. This change in community structure may be driven by an appreciable reduction of pelagic species from fragmented sites, as these sites have limited or no connectivity to the main body of the reservoir. With respect to the newly deposited lands, ecological succession of vegetation followed a progression from mud flats to dense, nearly monotypic stands of black willow Salix nigra forests within a few years. These habitat changes had strong implications to the fish communities as well as to adjacent terrestrial wildlife communities and will likely pose many challenges, and perhaps opportunities, for natural resource managers.

2017 ◽  
Vol 1 (1) ◽  
pp. 1-16
Author(s):  
John Harner ◽  
Lee Cerveny ◽  
Rebecca Gronewold

Natural resource managers need up-to-date information about how people interact with public lands and the meanings these places hold for use in planning and decision-making. This case study explains the use of public participatory Geographic Information System (GIS) to generate and analyze spatial patterns of the uses and values people hold for the Browns Canyon National Monument in Colorado. Participants drew on maps and answered questions at both live community meetings and online sessions to develop a series of maps showing detailed responses to different types of resource uses and landscape values. Results can be disaggregated by interaction types, different meaningful values, respondent characteristics, seasonality, or frequency of visit. The study was a test for the Bureau of Land Management and US Forest Service, who jointly manage the monument as they prepare their land management plan. If the information generated is as helpful throughout the entire planning process as initial responses seem, this protocol could become a component of the Bureau’s planning tool kit.


2005 ◽  
Vol 156 (8) ◽  
pp. 264-268
Author(s):  
James J. Kennedy ◽  
Niels Elers Koch

The increasing diversity, complexity and dynamics of ecosystem values and uses over the last 50 years requires new ways for natural resource managers (foresters, wildlife biologists, etc.)to understand and relate to their professional roles and responsibilities in accommodating urban and rural ecosystem users, and managing the complimentary and conflicting interactions between them. Three stages in Western-world natural resources management are identified and analyzed, beginning with the (1) Traditional stage: natural resources first, foremost and forever, to (2) Transitional stage: natural resource management,for better or worse, involves people, to (3) Relationship stage: managing natural resources for valued people and ecosystem relationships. The impacts of these three perspectives on how natural resource managers view and respond to ecosystems,people and other life-forms is basic and can be profound.


2021 ◽  
Author(s):  
Musab Mbideen ◽  
Balázs Székely

&lt;p&gt;Remote Sensing (RS) and Geographic Information System (GIS) instruments have spread rapidly in recent years to manage natural resources and monitor environmental changes. Remote sensing has a vast range of applications; one of them is lakes monitoring. The Dead Sea (DS) is subjected to very strong evaporation processes, leading to a remarkable shrinkage of its water level. The DS is being dried out due to a negative balance in its hydrological cycle during the last five decades. This research aims to study the spatial changes in the DS throughout the previous 48 years. Change detection technique has been performed to detect this change over the research period (1972-2020). 73 Landsat imageries have been used from four digital sensors; Landsat&amp;#160;1-5 MSS C1 Level-1, Landsat&amp;#160;4-5 TM C1 Level-1, Land&amp;#160;sat&amp;#160;7&amp;#160;ETM+ C1 &amp;#160;Level-1, and Landsat&amp;#160;8 OLI-TIRS C1 Level. After following certain selection criteria , the number of studied images decreased. Furthermore, the Digital Surface Model of the Space Shuttle Radar Topography Mission and a bathymetric map of the Dead Sea were used. The collected satellite imageries were pre-processed and normalized using ENVI 5.3 software by converting the Digital Number (DN) to spectral radiance, the spectral radiance was converted to apparent reflectance, atmospheric effects were removed, and finally, the black gaps were removed. It was important to distinguish between the DS lake and the surrounding area in order to have accurate results, this was done by performing classification techniques. The digital terrain model of the DS was used in ArcGIS (3D) to reconstruct the elevation of the shore lines. This model generated equations to detect the water level, surface area, and water volume of the DS. The results were compared to the bathymetric data as well. The research shows that the DS water level declined 65&amp;#160;m (1.35&amp;#160;m/a) in the studied period. The surface area and the water volume declined by 363.56&amp;#160;km&lt;sup&gt;2 &lt;/sup&gt;(7.57&amp;#160;km&lt;sup&gt;2&lt;/sup&gt;/a) and 53.56&amp;#160;km&lt;sup&gt;3&lt;/sup&gt; (1.11&amp;#160;km&lt;sup&gt;3&lt;/sup&gt;/a), respectively. The research also concluded that due to the bathymetry of the DS, the direction of this shrinkage is from the south to the north. We hypothesize that anthropogenic effects have contributed in the shrinkage of the DS more than the climate. The use of the DS water by both Israel and Jordan for industrial purposes is the main factor impacting the DS, another factor is the diversion of the Jordan and Yarmouk rivers. Our results also allow to give a prediction for the near future of the DS: the water level is expected to reach &amp;#8211;445&amp;#160;m in 2050, while the surface area and the water volume is expected to be 455&amp;#160;km&lt;sup&gt;2&lt;/sup&gt; and 142&amp;#160;km&lt;sup&gt;3&lt;/sup&gt;, respectively.&amp;#160;&lt;/p&gt;


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1056 ◽  
Author(s):  
Songpu Shang ◽  
Songhao Shang

The determination of the rational minimum ecological water level is the base for the protection of ecosystems in shrinking lakes and wetlands. Based on the lake surface area method, a simplified lake surface area method was proposed to define the minimum ecological lake level from the lake level-logarithm of the surface area curve. The curve slope at the minimum ecological lake level is the ratio of the maximum lake storage to the maximum surface area. For most practical cases when the curve cannot be expressed as a simple analytical function, the minimum ecological lake level can be determined numerically using the weighted sum method for an equivalent multi-objective optimization model that balances ecosystem protection and water use. This method requires fewer data of lake morphology and is simple to compute. Therefore, it is more convenient to use this method in the assessment of the ecological lake level. The proposed method was used to determine the minimum ecological water level for one freshwater lake, one saltwater lake, and one wetland in China. The results can be used in the lake ecosystem protection planning and the rational use of water resources in the lake or wetland basins.


<i>Abstract</i>.—Contemporary definitions of aquatic resource stewardship are a specific expression of ethical themes that humankind has wrestled with for millennia. The foundations for a stewardship ethic can be secular or spiritual. Other chapter contributors discuss a range of the secular foundations (e.g., fishing, boating); we discuss the implications of stewardship ethics rooted in religious traditions. Some fisheries professionals recognize religious–cultural influences on aquatic stewardship, such as those seen in Native American or Asian immigrant communities. But fisheries professionals have commonly ignored mainline Judeo-Christian faith traditions as an ethical basis for aquatic stewardship behavior, despite the fact that those traditions inform ethical development for large numbers of people in North America and that denominations within those traditions have increasingly engaged in stewardship-based environmental education and advocacy. The proposition that religious values often form the basis for a stewardship ethic presents several challenges for fisheries professionals striving to foster stewardship behavior. However, a basic understanding of these religious foundations could contribute to an improved practice of stewardship education, through outreach to a new constituency—faith communities. To illustrate this point, we briefly summarize some of the sources for stewardship found in the biblical corpus. We offer three examples of how Christian stewardship principles are manifest in aquatic stewardship programs delivered by faith communities. Models of partnership between natural resource managers and local faith communities are emerging across North America. In revisiting the ethical bases of stewardship and identifying new opportunities for stewardship education partnerships, we hope to demonstrate one more means by which fisheries professionals can bridge from stewardship education in principle to an effective practice of stewardship education.


<em>Abstract</em>—The North Fork Toutle River drains the northwest face of Mount St. Helens to the Cowlitz River, a major tributary of the Columbia River in southwestern Washington. In response to the 1980 eruption of Mount St. Helens, the U.S. Army Corps of Engineers constructed a sediment retention structure (SRS) in the North Fork Toutle River watershed to reduce the transport of fine sediment to the lower Cowlitz and Columbia River systems. The SRS was built without fish passage facilities and currently presents a significant barrier to migrating adult salmonids. To facilitate passage of coho salmon <em>Oncorhynchus kisutch </em>and steelhead <em>O. mykiss </em>to the upper watershed, a fish collection facility (FCF) was constructed 1.5 km downstream of the SRS, where fish are currently captured and transported to tributaries upstream of the SRS. We used radio telemetry to evaluate the movement of adult coho salmon and steelhead in the North Fork Toutle River in 2005 and 2006. A total of 40 coho and 42 steelhead were released from four different release sites in varied proportions. Release sites included the FCF, the SRS, and Alder Creek and Hoffstadt Creek, both North Fork Toutle River tributaries upstream of the SRS. Results from this research effort suggest that (1) unlike adult coho, adult steelhead are able to ascend the SRS spillway; (2) upstream adult coho and steelhead passage through the sediment plain is possible but may be flow-dependent; (3) adult coho and steelhead released in Alder Creek and Hoffstadt Creek tend to remain within their respective release tributary; and (4) postspawn steelhead emigration is limited. Future research is required to adequately address factors that influence movement of adult coho and steelhead in the upper North Fork Toutle River. The information resulting from this collaborative effort is enabling natural resource managers to determine whether the SRS spillway is a barrier to anadromous fish, to refine existing trap and haul operations, or, if appropriate, to consider modifying the spillway to enable volitional passage by upstream-migrating fish.


Author(s):  
Sherri L. Johnson

The influence of the Long-Term Ecological Research (LTER) program on my science has been to broaden my scope through exposure to long-term research and to encourage me to explore major questions across biomes. Communication and outreach with natural resource managers and policy makers has given me insight into translation of science and shaped my research. Through my experiences in the LTER program, I began collaborations with stream ecologists and biogeochemists across sites, which expanded into a high-profile research project that spanned several decades. I encourage scientists to work at LTER sites because they are supportive science communities with a wealth of information to share. Currently, I am a co–principal investigator at the H. J. Andrews Experimental Forest LTER project (AND) in Oregon and have been involved with LTER sites most of my professional life. In 1990, I began graduate research on freshwater shrimp responses to a hurricane at the Luquillo LTER site (LUQ) with Alan Covich, my PhD advisor at the University of Oklahoma. My involvement with LTER research expanded during my postdoctoral fellowship. Through the LTER All Scientists Meetings, I met Julia Jones and other researchers from AND. With their encouragement, I received a National Science Foundation (NSF) Postdoctoral Fellowship Grant in 1996 to examine stream temperature dynamics at AND. After several years at Oregon State University, I was hired by the US Forest Service (USFS) Pacific Northwest Research Station in 2001 as a USFS scientist for AND and became a co–principal investigator in 2002. I have had the benefit of being mentored for multiple years by Fred Swanson and have gradually assumed lead USFS responsibilities for AND. As a stream ecologist, I have studied basic questions and applied issues involving water quality, water quantity, and stream food webs, primarily in forested streams. My research at the LUQ site has examined responses of fresh water shrimp to disturbances and their role in ecosystem dynamics. At AND, my research exploring patterns and controls of stream temperature began as a theoretical landscape-scale question and expanded to examination of temperature responses to flow paths, calculations of heat budgets, and policy implications of forest management (Johnson and Jones 2000; Johnson 2004).


2011 ◽  
Vol 45 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Neal R. Pettigrew ◽  
C. Patrick Fikes ◽  
M. Kate Beard

AbstractThe Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS), which began in 2008, includes the University of Maine’s comprehensive data buoy array in the Gulf of Maine (GoM). The University of Maine buoy system started in 2001 as part of the Gulf of Maine Ocean Observing System (GoMOOS). The buoys provide a wide variety of oceanographic and marine meteorological data in real time to scientists, environmentalists, the National Weather Service, the U.S. Coast Guard and Canadian Coast Guard, educators, regional natural resource managers, the GoM fishing and maritime industries, and the general public. The GoM observing system is presently undergoing a redesign of the buoy control system to enhance remote access and reduce operational costs. The enhancements will allow remote trouble-shooting and reprogramming of the buoys and subsurface sensors. The system will also accommodate sensors from other research groups and allow them post-deployment control without assistance from our buoy group.Over the near-decade of operation, the system has revealed marked seasonal and interannual variability of the circulation and physical properties of the GoM. In the fall of 2004 to spring of 2005, Doppler currents measured an outflow of deep salty slope waters that suggest a regime shift in the inflow and outflow of transports through the Northeast Channel. During the same period, a salinity anomaly event lowered salinity throughout the GoM by roughly 2 psu by the winter of 2005. In following years, the previously unusual slope outflow and reduced salinity have often reoccurred.


Sign in / Sign up

Export Citation Format

Share Document