scholarly journals LEVEL PARTITIONING OF NODES TO ENHANCE THE NETWORK LIFETIME DURING INTRUSION DETECTION IN WIRELESS SENSOR NETWORKS

Author(s):  
A. BABU KARUPPIAH ◽  
KEERTHINATH KEERTHINATH ◽  
M. KUNDRU MALAI RAJAN ◽  
K.ASHIF ISMAIL SHERIFF ◽  
S. RAJARAM

A Wireless Sensor Network (WSN) consists of many sensor nodes with low cost and power capability Based on the deployment, in the sensing coverage of a sensor node, typically more nodes are covered. A major challenge in constructing a WSN is to enhance the network life time. Nodes in a WSN are usually highly energy-constrained and expected to operate for long periods from limited on-board energy reserves. To permit this, nodes and the embedded software that they execute – must have energy-aware operation. Because of this, continued developments in energy-efficient operation are paramount, requiring major advances to be made in energy hardware, power management circuitry and energy aware algorithms znd protocols. During Intrusion Detection in sensor networks, some genuine nodes need to communicate with the Cluster Head to inform about the details of malicious nodes. For such applications in sensor networks, a large number of sensor nodes that are deployed densely in specific sensing environment share the same sensing tasks. Due to this, the individual nodes might waste their energy in sensing data that are not destined to it and as a result the drain in the energy of the node is more resulting in much reduced network life time. In this paper, a novel algorithm is developed to avoid redundancy in sensing the data thereby enhancing the life time of the network. The concept of Power Factor bit is proposed while a node communicates with the Cluster Head. The simulation results show that the network life time is greatly enhanced by the proposed method.

Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Kashif Naseer Qureshi ◽  
Muhammad Umair Bashir ◽  
Jaime Lloret ◽  
Antonio Leon

Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.


2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


2021 ◽  
Vol 10 (6) ◽  
pp. 3353-3360
Author(s):  
Aso Ahmed Majeed ◽  
Baban Ahmed Mahmood ◽  
Ahmed Chalak Shakir

The research domain for wireless sensor networks (WSN) has been extensively conducted due to innovative technologies and research directions that have come up addressing the usability of WSN under various schemes. This domain permits dependable tracking of a diversity of environments for both military and civil applications. The key management mechanism is a primary protocol for keeping the privacy and confidentiality of the data transmitted among different sensor nodes in WSNs. Since node's size is small; they are intrinsically limited by inadequate resources such as battery life-time and memory capacity. The proposed secure and energy saving protocol (SESP) for wireless sensor networks) has a significant impact on the overall network life-time and energy dissipation. To encrypt sent messsages, the SESP uses the public-key cryptography’s concept. It depends on sensor nodes' identities (IDs) to prevent the messages repeated; making security goals- authentication, confidentiality, integrity, availability, and freshness to be achieved. Finally, simulation results show that the proposed approach produced better energy consumption and network life-time compared to LEACH protocol; sensors are dead after 900 rounds in the proposed SESP protocol. While, in the low-energy adaptive clustering hierarchy (LEACH) scheme, the sensors are dead after 750 rounds.


2013 ◽  
Vol 760-762 ◽  
pp. 685-690 ◽  
Author(s):  
Md Abdul AbdulAlim ◽  
Yu Cheng Wu ◽  
Wei Wang

Minimization of energy consumption is one of the most important research areas in Wireless Sensor Networks. Nowadays, the paradigms of computational intelligence (CI) are widely used in WSN, such as localization, clustering, energy aware routing, task scheduling, security, etc. Though many fuzzy based clustering techniques have been proposed earlier, many of them could not increase the total network life time in terms of LND (Last Node Dies) with comparing to LEACH. In this paper, a fuzzy logic based energy-aware dynamic clustering technique is proposed, which increases the network lifetime in terms of LND. Here, two inputs are given in the fuzzy inference system and a node is selected as a cluster head according to the fuzzy cost (output). The main advantage of this protocol is that the optimum number of cluster is formed in every round, which is almost impossible in LEACH (low-energy adaptive clustering hierarchy). Moreover, this protocol has less computational load and complexity. The simulation result demonstrates that this approach performs better than LEACH in terms of energy saving as well as network lifetime.


In the last few years, the Internet of Things (IoT) and the advance wireless networks are becoming very prominent in various domains. Wireless Sensors are facing problems of frequent energy loss which affects to the lifetime of the entire network. There are number of researchers who are working on such energy losses which occur in the wireless sensor nodes by using various approaches. One such method is Low- energy adaptive clustering hierarchy (LEACH) and its number of methods. Despite of various methods of LEACH, there is still immense scope of research as it is highly used in sensor nodes for different scenarios. The emerging growth of energy aware wireless sensor networks for a long time leads to various problems related to the lifetime of nodes in the wireless environment. In our research paper, a new and performance aware approach named Elephant Herd Optimization based Cluster Head Selection is devised and simulated so that the optimization level can be achieved. The nature inspired soft computing approaches are always beneficial for the use of optimization and reduction of various problems which can occur during energy optimization and this is the main focus which is considered in this research work. The main fundamental concept of the cluster head shuffling using EHO and other methods of key exchange are simulated in Contiki-Cooja which is an open source simulator for wireless sensor networks


Author(s):  
K Pavan Kumar Reddy Et.al

In wireless sensor networks (WSNs), energy constraint of node is the major issue, as the sensor may be deployed in the area where energy backup or quick replacements may not be available. In such cases, preserving the node energy and prolonging the network life time play crucial role in wireless sensor networks. Similarly, sensor nodes are highly vulnerable to attacks, attackers can easily tamper the sensor node and compromise it. Thus to overcome above stated two problems, the proposed work ensures shortest path routing, which ensures network life time of sensor nodes and the trust based routing, which avoids node compromise attacks. The proposed shortest path routing algorithms takes route through multi-hop nodes to corresponding sink. The shortest path based on the geographical routing strategy chooses the nodes nearest to the routing node and sink node. The novel routing framework proposed in this work considered shortest path with trust based routes. The node's energy is considered to taking reliable node on the routing path, which ensure the packet delivery and avoids any node failure due to less energy. The node's trust value is evaluated with three type, which ensure that the paths created are more reliable


Sign in / Sign up

Export Citation Format

Share Document