scholarly journals Comparative Study of PID Based VMC and Fuzzy Logic Controllers for Flyback Converter

Author(s):  
P. Rajesh Kumar ◽  
S. L. V. Sravan Kumar

In this paper performance of flyback converter by using PID controller and Fuzzy controller are studied, compared and analyzed. The above study is done for 200W, 230V A.C input 48V DC output. Design of fuzzy controller is based on the heuristic knowledge of converter behaviour, and tuning of fuzzy inference requires some expertise to minimize unproductive trial and error. The design of PID control is based on the frequency response of the converter. For the DC-DC converters, the performance of the fuzzy controller was superior in some respects to that of the PID controller. The fuzzy controller is easily to develop, they cover a wide range of operating conditions, and they are more readily customizable in natural language terms. Simulation is done in Matlab environment to show the performance variations of above mentioned converters using both Fuzzy & PID controllers.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

AbstractThe processes which contain at least one pole at the origin are known as integrating systems. The process output varies continuously with time at certain speed when they are disturbed from the equilibrium operating point by any environment disturbance/change in input conditions and thus they are considered as non-self-regulating. In most occasions this phenomenon is very disadvantageous and dangerous. Therefore it is always a challenging task to efficient control such kind of processes. Depending upon the number of poles present at the origin and also on the location of other poles in transfer function different types of integrating systems exist. Stable first order plus time delay systems with an integrator (FOPTDI), unstable first order plus time delay systems with an integrator (UFOPTDI), pure integrating plus time delay (PIPTD) systems and double integrating plus time delay (DIPTD) systems are the classifications of integrating systems. By using a well-controlled positioning stage the advances in micro and nano metrology are inevitable in order satisfy the need to maintain the product quality of miniaturized components. As proportional-integral-derivative (PID) controllers are very simple to tune, easy to understand and robust in control they are widely implemented in many of the chemical process industries. In industries this PID control is the most common control algorithm used and also this has been universally accepted in industrial control. In a wide range of operating conditions the popularity of PID controllers can be attributed partly to their robust performance and partly to their functional simplicity which allows engineers to operate them in a simple, straight forward manner. One of the accepted control algorithms by the process industries is the PID control. However, in order to accomplish high precision positioning performance and to build a robust controller tuning of the key parameters in a PID controller is most inevitable. Therefore, for PID controllers many tuning methods are proposed. the main factors that lead to lifetime reduction in gain loss of PID parameters are described in This paper and also the main methods used for gain tuning based on optimization approach analysis is reviewed. The advantages and disadvantages of each one are outlined and some future directions for research are analyzed.


2013 ◽  
Vol 6 (1) ◽  
pp. 62-74
Author(s):  
Abidaoun H. shallal ◽  
Rawaa A. Karim ◽  
Osama Y. Al-Rawi

Proportional integral derivative (PID) control is the most commonly used  control algorithm in the industry today. PID controller popularity can be attributed to the  controller’s effectiveness in a wide range of operation conditions, its functional simplicity, and the ease with which engineers can implement it using current computer technology . In this paper,the Dc servomotor model is chosen according to his good electrical and mechanical performances more than other Dc motor models , discuss the novel method for  tuning PID controller and comparison with Ziegler - Nichols method from through parameters of transient response of any system which uses PID compensator


Author(s):  
Amjed A. Al-mousa ◽  
Ali H. Nayfeh ◽  
Pushkin Kachroo

Abstract Rotary cranes (tower cranes) are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them became difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control preferable. In this work a fuzzy logic controller is introduced with the idea of split-horizon; that is, fuzzy inference engines (FIE) are used for tracking the position and others are used for damping the load oscillations. The controller consists of two independent controllers: radial and rotational. Each of these controllers has two fuzzy inference engines (FTEs). Computer simulations are used to verify the performance of the controller. Three simulation cases are introduced: radial, compound, and damping. The results from the simulations show that the fuzzy controller is capable of keeping the load-oscillation angles small throughout the maneuvers while completing them in a relatively reasonable time.


Author(s):  
Harry Bonilla-Alvarado ◽  
Bernardo Restrepo ◽  
Paolo Pezzini ◽  
Lawrence Shadle ◽  
David Tucker ◽  
...  

Abstract Proportional integral and derivative (PID) controllers are the most popular technique used in the power plant industry for process automation. However, the performance of these controllers may be affected due to variations in the power plant operating conditions, such as between startup, shutdown, and baseload/part-load operation. To maintain the desired performance over the full range of operations, PID controllers are always retuned in most power plants. During this retuning process, the operator takes control of the manipulated variable to perform a standard procedure based on a bump test. This procedure is generally performed to characterize the relationship between the manipulated variable and the process variable at each operating condition. After the bump test, the operator generally applies basic guidelines to assign new parameters to the PID controller. In this paper, the Model Reference Adaptive Controller (MRAC) control technique was implemented to update the PID controller parameters online without performing the bump test procedure. This approach allows updating the controller response on-the-fly while the power plant is running and without using the standard procedure based on a bump test. The MRAC was developed and demonstrated in the gas turbine hybrid cycle at the National Energy Technology Laboratory (NETL) to retune a critically damped mass flow PID controller into an over-damped response. Results showed stable performance during mass flow setpoint steps and also a stable update of the controller parameters.


2012 ◽  
Vol 220-223 ◽  
pp. 880-883
Author(s):  
Hui Wang ◽  
Zhuo Xu

According to the problem of large overshoot in the variable pump constant pressure output, the fuzzy controller and PID controller were combined. The dynamic response of system output pressure was obtained by combining simulation with a fuzzy adaptive PID controller designed in Matlab/Simulink and mechanical hydraulic model established in AMESim. The simulation results show that fuzzy PID control can achieve the goal of system response without overshoot, and response speed is improved further. The anti-interference ability is also stronger.


2003 ◽  
Vol 10 (2) ◽  
pp. 81-95 ◽  
Author(s):  
Amjed A. Al-mousa ◽  
Ali H. Nayfeh ◽  
Pushkin Kachroo

Rotary cranes (tower cranes) are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them has become difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control attractive.In this work a fuzzy logic controller is introduced with the idea of “split-horizon”; that is, fuzzy inference engines (FIE) are used for tracking the position and others are used for damping the load oscillations. The controller consists of two independent sub-controllers: radial and rotational. Each of these controllers has two fuzzy inference engines (FIE). Computer simulations are used to verify the performance of the controller. Three simulation cases are presented. In the first case, the crane is operated in the gantry (radial) mode in which the trolley moves along the jib while the jib is fixed. In the second case (rotary mode), the trolley moves along the jib and the jib rotates. In the third case, the trolley and jib are fixed while the load is given an initial disturbance. The results from the simulations show that the fuzzy controller is capable of keeping the load-oscillation angles small throughout the maneuvers while completing the maneuvers in relatively reasonable times.


2014 ◽  
Vol 496-500 ◽  
pp. 1221-1225 ◽  
Author(s):  
Shu Qi Xue ◽  
Wen Zhao Yan ◽  
Liang Ma

In order to improve the accuracy and stability of sludge digestion tank temperature control, based on the PID control with fuzzy controller, using the fuzzy control algorithm, obtained the adjustment of PID control parameters and online self-regulation of PID controllers parameters. The simulation tests show that the fuzzy PID control system for sludge digestion tank temperature outperforms the general PID control system because of a ±1°C control accuracy, this can satisfy the requirements of temperature control of sludge digestion.


2019 ◽  
Vol 9 (6) ◽  
pp. 1224 ◽  
Author(s):  
Chun-Tang Chao ◽  
Nana Sutarna ◽  
Juing-Shian Chiou ◽  
Chi-Jo Wang

This paper proposes an optimal fuzzy proportional–integral–derivative (PID) controller design based on conventional PID control and nonlinear factors. With the equivalence between fuzzy logic controllers (FLCs) and conventional PID controllers, a conventional PID controller design can be rapidly transformed into an equivalent FLC by defining the operating ranges of the input/output of the controller. The proposed nonlinear factors can further tune the nonlinearity of the membership functions (MFs) distributed in the operating ranges. In this manner, a fuzzy PID controller can be developed with less parameters and optimized by using the genetic algorithm (GA). In addition, the aforementioned equivalent FLC can act as one individual in the initial population of GA, and significantly enhances the GA efficiency. Simulation results demonstrate the feasibility of this technique. This resulted in an optimal fuzzy PID controller design with only eight parameters with a concise controller structure, and most importantly, the optimal fuzzy PID controller design is now more systematic.


Author(s):  
Xian Hong Li ◽  
Hai Bin Yu ◽  
Ming Zhe Yuan ◽  
Chuan Zhi Zang ◽  
Zhuo Wang

This paper focuses on the design method of the optimal multiple inputs and multiple outputs (MIMO) proportional integral derivative (PID) controllers for the MIMO processes via using Lyapunov theorems. A hybrid augmented integral squared error (HAISE) is applied to design the optimal multi-loop PID controller for the MIMO plants. The optimal multi-loop PID control problem is transformed into a nonlinear constraint optimization (NLCO) problem. The optimal PID controller parameters are obtained from solving the NLCO problem. The design method is applied to devise the multi-loop optimal PID controller for different types of MIMO plants and the optimal PID controller under different control weight is shown in this paper. The performances of different PID tuning methods are studied too. The computer simulation results are presented to demonstrate the effectiveness of the design method and good performance and robustness of the optimal multi-loop PID controllers.


2012 ◽  
Vol 605-607 ◽  
pp. 1729-1733
Author(s):  
Qing Rui Meng ◽  
Jian Wang ◽  
Shang Fei Lin

The tramcar runs upward and downward frequently and the load varies with practical requirements, the operating conditions of the hydro-viscous winch are very complex, so the ordinary PID controller cannot meet the requirements of the winch. In order to control the speed of the hydro-viscous winch precisely and obtain perfect starting speed, a new fuzzy-PID control system was designed, the starting process of the winch and the speed regulation characteristics were simulated by using MATLAB. The results show that the designed control system can meet the requirements of the winch well. It can not only obtain perfect starting speed, but also adjust the running speed precisely. Research achievements of this work provide theoretical basis for optimal design and practical applications of the hydro-viscous winch.


Sign in / Sign up

Export Citation Format

Share Document