scholarly journals FINITE ELEMENT ANALYSIS OF WELDED JOINTS

Author(s):  
RAJLAXMI N. MHETRE ◽  
S.G. JADHAV

Fusion welding is one of the most used methods for joining metals. This method has largely been developed by experiments, i.e. trial and error. The problem of distortion and residual stresses of a structure is due to welding is important to control. Industry where the components are expensive and safety and quality are highly important issues. The aim of the work presented in this paper is to develop an efficient and reliable method for simulation of the welding process using the Finite Element Method. The method may then be used when designing and planning the manufacturer of a component, so that introduction of new components can be made with as little disturbance as possible. When creating a numerical model, the aim is to implement the physical behavior of the process into the model. However, it may be necessary to compromise between accuracy of the model and the required computational time. Different types of simplifications of the problem and more efficient computation methods are discussed. Simulations have been carried out in order to validate the models. Moving heat source and element death & birth technique is used to simulate Welding Process.

2007 ◽  
Vol 44 (04) ◽  
pp. 212-225
Author(s):  
Lior Banai ◽  
Omri Pedatzur

Stiffened plates form the backbone of most of a ship's structure. Today, finite element (FE) models are used to analyze the behavior of such structural elements for different types of loads. In the past, when usage of computers and FE models were not used very much, analytical analysis methods were required. Two well-known methods have been developed for analyses of stiffened plates under lateral loading (uniform pressure), based on two different models, namely, the orthotropic plate model and the grillage model. Both models can give estimations for the maximum plate deflection under uniform lateral pressure. The objective of this paper is to present the two methods, evaluate and compare the methods using the finite element method, and finally implement the methods as a computer program for quick estimations of the maximum deflection of stiffened plates. The degree of accuracy of the two methods when compared to FE is discussed in some detail.


2011 ◽  
Vol 88-89 ◽  
pp. 735-740
Author(s):  
Jian Guo Yang ◽  
Wei Fu ◽  
Jia Shuang Gao ◽  
Xue Song Liu ◽  
Zhi Bo Dong ◽  
...  

A new thinking was introduced that combine finite element analysis(FEA) for welding process simulation with virtual manufacture(VM), it is significant research according to comparison of FEA for welding process and VM, parameters input by FEA pre-processor and by VR technology, FEA results cab be shown by FEA post-processor and by VR technology. The framework for welding FEA based on VM was proposed and some key technologies were also discussed.


2013 ◽  
Vol 690-693 ◽  
pp. 1966-1971
Author(s):  
Peng Shang ◽  
Kai Cheng Qi ◽  
Ya Xu Wang ◽  
Yu Ming Guan

This paper used the finite element method to compare the mechanical properties of two different configuration counterweight booms of the bucket wheel stacker reclaimer. And two different forms of the finite element analysis model of the counterweight booms were built in ANSYS. The stresses and strains under its working state were calculated. Then the impact of the counterweight arm to the force and stability of the whole rack could be analyzed. The results of this analysis provided a basis to select different types of the counterweight booms in different environment, and it has an important guidance and reference significance to the design and analysis of counterweight booms of large-scale machinery.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Meccanica ◽  
2021 ◽  
Author(s):  
J. Jansson ◽  
K. Salomonsson ◽  
J. Olofsson

AbstractIn this paper we present a semi-multiscale methodology, where a micrograph is split into multiple independent numerical model subdomains. The purpose of this approach is to enable a controlled reduction in model fidelity at the microscale, while providing more detailed material data for component level- or more advanced finite element models. The effective anisotropic elastic properties of each subdomain are computed using periodic boundary conditions, and are subsequently mapped back to a reduced mesh of the original micrograph. Alternatively, effective isotropic properties are generated using a semi-analytical method, based on averaged Hashin–Shtrikman bounds with fractions determined via pixel summation. The chosen discretization strategy (pixelwise or partially smoothed) is shown to introduce an uncertainty in effective properties lower than 2% for the edge-case of a finite plate containing a circular hole. The methodology is applied to a aluminium alloy micrograph. It is shown that the number of elements in the aluminium model can be reduced by $$99.89\%$$ 99.89 % while not deviating from the reference model effective material properties by more than $$0.65\%$$ 0.65 % , while also retaining some of the characteristics of the stress-field. The computational time of the semi-analytical method is shown to be several orders of magnitude lower than the numerical one.


2021 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Dong-Ha Lee ◽  
Seung-Joo Cha ◽  
Jeong-Dae Kim ◽  
Jeong-Hyeon Kim ◽  
Seul-Kee Kim ◽  
...  

Because environmentally-friendly fuels such as natural gas and hydrogen are primarily stored in the form of cryogenic liquids to enable efficient transportation, the demand for cryogenic fuel (LNG, LH) ships has been increasing as the primary carriers of environmentally-friendly fuels. In such ships, insulation systems must be used to prevent heat inflow to the tank to suppress the generation of boil-off gas (BOG). The presence of BOG can lead to an increased internal pressure, and thus, its control and prediction are key aspects in the design of fuel tanks. In this regard, although the thermal analysis of the phase change through a finite element analysis requires less computational time than that implemented through computational fluid dynamics, the former is relatively more error-prone. Therefore, in this study, a cryogenic fuel tank to be incorporated in ships was established, and the boil-off rate (BOR), measured considering liquid nitrogen, was compared with that obtained using the finite element method. Insulation material with a cubic structure was applied to the cylindrical tank to increase the insulation performance and space efficiency. To predict the BOR through finite element analysis, the effective thermal conductivity was calculated through an empirical correlation and applied to the designed fuel tank. The calculation was predicted to within 1% of the minimum error, and the internal fluid behavior was evaluated by analyzing the vertical temperature profile according to the filling ratio.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1689-1694 ◽  
Author(s):  
PENG YAN ◽  
CHIPING JIANG

This work deals with modeling of 1-3 thermoelectroelastic composites with a doubly periodic array of piezoelectric fibers under arbitrary combination of mechanical, electrical loads and a uniform temperature field. The finite element method (FEM) based on a unit cell model is extended to take into account the thermoelectroelastic effect. The FE predictions of effective properties for several typical periodic microstructures are presented, and their influences on effective properties are discussed. A comparison with the Mori-Tanaka method is made to estimate the application scope of micromechanics. The study is useful for the design and assessment of composites.


Sign in / Sign up

Export Citation Format

Share Document