scholarly journals Optimization of Cutting Conditions in End Milling Process with the Approach of Particle Swarm Optimization

Author(s):  
Vikas Pare ◽  
Geeta Agnihotri ◽  
C.M. Krishna

Milling is one of the progressive enhancements of miniaturized technologies which has wide range of application in industries and other related areas. Milling like any metal cutting operation is used with an objective of optimizing surface roughness at micro level and economic performance at macro level. In addition to surface finish, modern manufacturers do not want any compromise on the achievement of high quality, dimensional accuracy, high production rate, minimum wear on the cutting tools, cost saving and increase of the performance of the product with minimum environmental hazards. In order to optimize the surface finish, the empirical relationships between input and output variables should be established in order to predict the output. Optimization of these predictive models helps us to select appropriate input variables for achieving the best output performance. In this paper, four input variables are selected and surface roughness is taken as output variable. Particle swarm optimization technique is used for finding the optimum set of values of input variables and the results are compared with those obtained by GA optimization in the literature.

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 357 ◽  
Author(s):  
Shu-Kai S. Fan ◽  
Chih-Hung Jen

Particle swarm optimization (PSO) is a population-based optimization technique that has been applied extensively to a wide range of engineering problems. This paper proposes a variation of the original PSO algorithm for unconstrained optimization, dubbed the enhanced partial search particle swarm optimizer (EPS-PSO), using the idea of cooperative multiple swarms in an attempt to improve the convergence and efficiency of the original PSO algorithm. The cooperative searching strategy is particularly devised to prevent the particles from being trapped into the local optimal solutions and tries to locate the global optimal solution efficiently. The effectiveness of the proposed algorithm is verified through the simulation study where the EPS-PSO algorithm is compared to a variety of exiting “cooperative” PSO algorithms in terms of noted benchmark functions.


Author(s):  
Mohamed Arezki Mellal ◽  
Edward J. Williams

Nowadays, biologically-inspired optimization algorithms are widely used for solving several engineering problems. Furthermore, there is a wide range of bio-inspired algorithms relative to the various methods of optimization. A detailed description of all these possibilities could take up the whole book. In this chapter, the principles of ant colony optimization, particle swarm optimization, and cuckoo algorithms are presented. A survey on their applications and advantages/disadvantages is also highlighted. An application on the surface roughness minimization of Al Alloy SiC is presented to identify the most suitable optimization method.


Author(s):  
Durul Ulutan ◽  
Abram Pleta ◽  
Laine Mears

Titanium alloy Ti-6Al-4V is a material with superior properties such as high mechanical strength, corrosion and creep resistance, and high strength-to-weight ratio, which make it an attractive material for various industries such as automotive, aerospace, power generation, and biomedical industries. However, these superior properties as well as its low thermal conductivity and chemical reactivity make it a challenge to machine Ti-6Al-4V at optimal conditions. In order to overcome this challenge, researchers constantly develop new tools and new techniques, but the extent of machining rates that can be used efficiently with those tools and techniques are usually not clear. Considering only one variable in the process and optimizing according to that variable is not sufficient because of the interactions between parameters. Also, selecting one objective function from a pool of many is not beneficial since those objectives are in conflict with one another. Therefore, this study proposes the use of a combined optimization algorithm in order to account for three major variables in end milling of Ti-6Al-4V: cutting speed, feed, and depth of cut. These variables are optimized for multiple objectives. Although it is possible to optimize the process for many different objectives, some of them are heavily correlated to each other, hence two objectives representing machinability and efficiency are selected: tool flank wear and material removal rate. The study aims to establish an optimal Pareto front of machining parameters that would optimize the conflicting outputs of the process, utilizing the multi-objective particle swarm optimization technique.


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
J. Usman ◽  
M. W. Mustafa ◽  
G. Aliyu ◽  
B. U. Musa

This paper presents the coordination between the Automatic Voltage Regulator (AVR) and Power System Stabilizers (PSS) to increase the system damping over a wide range of systems’ operating conditions in order to improve the transient stability performance and steady state performance of the system. The coordinated design problem is formulated as an optimization problem which is solved using Iteration Particle Swarm Optimization (IPSO). The application of IPSO technique is proposed to optimize the parameters of the AVR and PSS to minimize the oscillations in power system during disturbances in a single machine infinite bus system (SMIB). The performance of the proposed IPSO technique is compared with the traditional PSO technique. The comparison considered is in terms of parameter accuracy and computational time. The results of the time domain simulations and eigenvalue analysis show that the proposed IPSO method provides a better optimization technique as compared to the traditional PSO technique.  


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5494
Author(s):  
Issam Abu-Mahfouz ◽  
Amit Banerjee ◽  
Esfakur Rahman

Surface roughness measurements of machined parts are usually performed off-line after the completion of the machining operation. The objective of this work is to develop a surface roughness prediction method based on the processing of vibration signals during steel end milling operation performed on a vertical CNC machining center. The milling cuts were run under varying conditions (such as the spindle speed, feed rate, and depth of cut). This is a first step in the attempt to develop an online milling process monitoring system. The study presented here involves the analysis of vibration signals using statistical time parameters, frequency spectrum, and time-frequency wavelet decomposition. The analysis resulted in the extraction of 245 features that were used in the evolutionary optimization study to determine optimal cutting conditions based on the measured surface roughness of the milled specimen. Three feature selection methods were used to reduce the extracted feature set to smaller subsets, followed by binarization using two binarization methods. Three evolutionary algorithms—a genetic algorithm, particle swarm optimization and two variants, differential evolution and one of its variants, have been used to identify features that relate to the “best” surface finish measurements. These optimal features can then be related to cutting conditions (cutting speed, feed rate, and axial depth of cut). It is shown that the differential evolution and its variant performed better than the particle swarm optimization and its variants, and both differential evolution and particle swarm optimization perform better than the canonical genetic algorithm. Significant differences are found in the feature selection methods too, but no difference in performance was found between the two binarization methods.


Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.


Sign in / Sign up

Export Citation Format

Share Document