The Fixture Design and Mechanical Characteristic Analysis of Nuclear Power Pressure Vessel

2021 ◽  
Author(s):  
J. C. Kim ◽  
J. B. Choi ◽  
Y. H. Choi

Since early 1950’s fracture mechanics has brought significant impact on structural integrity assessment in a wide range of industries such as power, transportation, civil and petrochemical industries, especially in nuclear power plant industries. For the last two decades, significant efforts have been devoted in developing defect assessment procedures, from which various fitness-for-purpose or fitness-for-service codes have been developed. From another aspect, recent advances in IT (Information Technologies) bring rapid changes in various engineering fields. IT enables people to share information through network and thus provides concurrent working environment without limitations of working places. For this reason, a network system based on internet or intranet has been appeared in various fields of business. Evaluating the integrity of structures is one of the most critical issues in nuclear industry. In order to evaluate the integrity of structures, a complicated and collaborative procedure is required including regular in-service inspection, fracture mechanics analysis, etc. And thus, experts in different fields have to cooperate to resolve the integrity problem. In this paper, an integrity evaluation system on the basis of cooperative virtual reality environment for reactor pressure vessel which adapts IT into a structural integrity evaluation procedure for reactor pressure vessel is introduced. The proposed system uses Virtual Reality (VR) technique, Virtual Network Computing (VNC) and knowledge based programs. This system is able to support 3-dimensional virtual reality environment and to provide experts to cooperate by accessing related data through internet. The proposed system is expected to provide a more efficient integrity evaluation for reactor pressure vessel.


2021 ◽  
Vol 14 (1) ◽  
pp. 34-39
Author(s):  
D. A. Kuzmin ◽  
A. Yu. Kuz’michevskiy

The destruction of equipment metal by a brittle fracture mechanism is a probabilistic event at nuclear power plants (NPP). The calculation for resistance to brittle destruction is performed for NPP equipment exposed to neutron irradiation; for example, for a reactor plant such as a water-water energetic reactor (WWER), this is a reactor pressure vessel. The destruction of the reactor pressure vessel leads to a beyond design-basis accident, therefore, the determination of the probability of brittle destruction is an important task. The research method is probabilistic analysis of brittle destruction, which takes into account statistical data on residual defectiveness of equipment, experimental results of equipment fracture toughness and load for the main operating modes of NPP equipment. Residual defectiveness (a set of remaining defects in the equipment material that were not detected by non-destructive testing methods after manufacturing (operation), control and repair of the detected defects) is the most important characteristic of the equipment material that affects its strength and service life. A missed defect of a considerable size admitted into operation can reduce the bearing capacity and reduce the time of safe operation from the nominal design value down to zero; therefore, any forecast of the structure reliability without taking into account residual defectiveness will be incorrect. The application of the developed method is demonstrated on the example of an NPP reactor pressure vessel with a WWER-1000 reactor unit when using the maximum allowable operating loads, in the absence of load dispersion in different operating modes, and taking into account the actual values of the distributions of fracture toughness and residual defectiveness. The practical significance of the developed method lies in the possibility of obtaining values of the actual probability of destruction of NPP equipment in order to determine the reliability of equipment operation, as well as possible reliability margins for their subsequent optimization.


Author(s):  
Omesh K. Chopra

The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components and specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain–vs.–life (ε–N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This paper reviews the existing fatigue ε–N data for austenitic stainless steels in LWR coolant environments. The effects of key material, loading, and environmental parameters, such as steel type, strain amplitude, strain rate, temperature, dissolved oxygen level in water, and flow rate, on the fatigue lives of these steels are summarized. Statistical models are presented for estimating the fatigue ε–N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue design curves.


Author(s):  
Ronald J. Payne ◽  
Stephen Levesque

Stress corrosion cracking of Alloy 600 has lead to the modification and replacement of many nuclear power plant components. Among these components are the Bottom Mounted Nozzles (BMN) of the Reactor Pressure Vessel (RPV). Modifications of these components have been performed on an emergent basis. Since that time, Framatome ANP has developed state-of-the-art modification methods for the repair of BMNs using the Electrical Power Research Institute (EPRI) managed Materials Reliability Program (MRP) attributes for an ideal repair as a basis for evaluation of modification concepts. These attributes were used to evaluate the optimal modification concepts and develop processes and tooling to support future modification activity. This paper details the BMN configurations, modification evaluation criteria, several modification concepts, and the development of the tooling to support the optimal modification scenarios.


Author(s):  
Timothy M. Adams ◽  
Shawn Nickholds ◽  
Douglas Munson ◽  
Jeffery Andrasik

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel piping with high density polyethylene (HDPE) is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs that carbon steel pipe and HDPE pipe has a much greater resistance to corrosion. The ASME Boiler and Pressure Vessel Code, Section III, Division 1 currently permits the use of non-metallic piping in buried safety Class 3 piping systems. Additionally, HDPE pipe has been successfully used in non-safety-related systems in nuclear power facilities and is commonly used in other industries such as water mains and natural gas pipelines. This report presents the results of updated fatigue testing of PE 4710 cell classification 445574C pipe compliant with the specific Code requirements. This information was developed to support and provide a strong technical basis for material properties of HDPE pipe for use in ASME Boiler and Pressure Vessel Code, Section III New Construction and Section XI repair or replacement activities. The data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process and waste water plants via its possible use in the B31 series piping codes. The report provides fatigue data in the form of Code S-N curves for fusion butt joints in PE 4710 cell classification 445574C HDPE pipe.


Author(s):  
Juyoul Kim ◽  
Batbuyan Tseren

Assessing workers’ safety and health during the decommissioning of nuclear power plants (NPPs) is an important procedure in terms of occupational radiation exposure (ORE). Optimizing the radiation exposure through the “As Low As Reasonably Achievable (ALARA)” principle is a very important procedure in the phase of nuclear decommissioning. Using the VISIPLAN 3D ALARA planning tool, this study aimed at assessing the radiological doses to workers during the dismantling of the reactor pressure vessel (RPV) at Kori NPP unit 1. Fragmentation and segmentation cutting processes were applied to cut the primary component. Using a simulation function in VISIPLAN, the external exposure doses were calculated for each work operation. Fragmentation involved 18 operations, whereas segmentation comprised 32 operations for each fragment. Six operations were additionally performed for both hot and cold legs of the RPV. The operations were conducted based on the radioactive waste drum’s dimensions. The results in this study indicated that the collective doses decreased as the components were cut into smaller segments. The fragmentation process showed a relatively higher collective dose compared to the segmentation operation. The active part of the RPV significantly contributed to the exposure dose and thus the shielding of workers and reduced working hours need to be considered. It was found that 60Co contained in the stainless steel of the reactor vessel greatly contributed to the dose as an activation material. The sensitivity analysis, which was conducted for different cutting methods, showed that laser cutting took a much longer time than plasma cutting and contributed higher doses to the workers. This study will be helpful in carrying out the occupational safety and health management of decommissioning workers at Kori NPP unit 1 in the near future.


Author(s):  
J. Dadoumont ◽  
J.-M. Brossard ◽  
H. Davain ◽  
V. Massaut ◽  
Y. Demeulemeester ◽  
...  

Abstract The BR3 PWR is a small nuclear power plant (thermal power 40.9 MWth, net electrical power output 10.5 MWe), designed in the late fifties and started in 1962. It was definitely shut down in 1987. In 1989 the BR3 was selected by the European Union as pilot decommissioning project in the framework of its RTD programme on the decommissioning of nuclear installations. A pre-dismantling decontamination of the reactor primary loop was carried out and allowed to save doses to the operators. The savings are estimated to be up to about 4 to 7 man-Sv. The decommissioning project concerns mainly: • The dismantling of the highly radioactive reactor internals. Different techniques were used and compared on a first actual piece called the thermal shield: from plasma arc torch cutting to mechanical sawing, including also electric discharge machining. Based on the experience gained during this part of the project, the mechanical cutting techniques were promoted for the segmentation of both sets of internals, the desolidarisation and the segmentation of the RPV. • For the dismantling of the reactor pressure vessel, wet and dry dismantling were studied and compared. For economical and feasibility reasons, the wet dismantling was selected. Afterwards, two underwater segmentations were also studied: in-situ segmentation and a segmentation after having removed the RPV out of its cavity. • Mainly for technical reasons, the reactor pressure vessel was removed in one piece out of its cavity in order to be cut in the former refuelling pool. The disconnection of the RPV from the other parts of the plant was followed by the reinstallation of the watertightness of the pool in order to allow remote underwater segmentation. The disconnection, the watertightness reinstallation and the segmentation represented important challenges. The subtasks will be extensively described in the paper: disconnection from the pools floor, removal of the thermal insulation from the legs, decoupling from the primary loop at two levels, from its supporting structure, the reinstallation of the watertightness of the pool and testing, the removal of the RPV out of its cavity, the remote dismantling of its surrounding thermal insulation (which led to an annoying pool water turbidity) and, finally the effective RPV dismantling. • For the segmentation, two main cutting equipments were used: the milling cutter for cutting the RPV into rings and the bandsaw machine for cutting each ring into segments. The bandsaw machine was also used in order to cut the RPV upper flange into pieces vertically as well as horizontally. • The last generated pieces, the highest radioactive ones, were evacuated at the end of 2000. • Waste characterisation, minimization and management is an important part of the task in order to reduce evacuation and storage costs. • ALARA approach was applied from the early beginning of the project. • For each “key operation” cold tests were organized in order to optimize the work and to take benefit of the learning effect of such operation. Results of the operations will be presented, the lessons drawn for the technical choices, dose uptake minimization, waste reduction and the technical problems met will be highlighted. As a pioneering project, the dismantling of the BR3 Reactor Pressure Vessel has shown the technical feasibility of such an operation in a safe and economical way as well.


Author(s):  
M. Bie`th ◽  
R. Ahlstrand ◽  
C. Rieg ◽  
P. Trampus

The European Union’ TACIS programme was established for the New Independent States since 1991. One priority for TACIS funding is nuclear safety. The European Commission has made available a total of € 944 million for nuclear safety programmes covering the period 1991–2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. The Joint Research Center (JRC) of the European Commission is carrying out works in the following areas: • On-Site Assistance for TACIS Nuclear Power Plants; • Design Safety and Dissemination of TACIS results; • Reactor Pressure Vessel Embrittlement for VVER in Russia and Ukraine; • Regulatory Assistance; • Industrial Waste Management and Nuclear Safeguards. This paper gives an overview of the Scientific and Technical support that JRC is providing for the programming and the implementation of the TACIS nuclear safety programmes. In particular, two new projects are being implemented to get an extensive understanding of the VVER reactor pressure vessel embritttlement and integrity assessment.


Sign in / Sign up

Export Citation Format

Share Document