scholarly journals Compatibility of Toothed Ascenders with Arborist Climbing Ropes

2011 ◽  
Vol 37 (4) ◽  
pp. 180-185
Author(s):  
Brian Kane

Climbers are increasingly using ascenders to access trees, both as a substitute for Prusik loops used in footlocking a doubled rope and with the single rope technique. Manufacturers, however, have explicit limitations on use of ascenders, many of which are violated when used in tree climb-ing. Ascenders were tested on four arborist climbing ropes in a dynamic drop test; impact load and arrest distance were measured. Of 67 tests, arrest distance met the EN 12841-2006 Standard (≤2 m) only 10 times. Impact loads averaged more than five kN, adding a backup friction hitch to the as-cender increased impact load to more than six kN. Climbers need to be made aware of the appropriate use of ascenders, and only use compatible ropes.

1992 ◽  
Vol 19 (6) ◽  
pp. 573-599 ◽  
Author(s):  
B.T. Rosson ◽  
J.W. Tedesco

Due to tearing out at its corrugations because of high wind and impact loads most of the corrugated roofing sheets have damaged. By using fibre reinforcement the strength of these sheets can be improved. The fibres play the role of crack arrest and absorb energy. In this research paper the fibre namely polyester, glass fibre, coconut coir fibre and fly ash are used as reinforcement in cement matrices for producing corrugated roofing sheets and it has been investigated and reported. These roofing sheets were cast by hand and the strength of the corrugations of the sheets in terms of splitting due to water absorption test, impact load and flexure test were experimentally evaluated. It is identified that the strength of the fibre sheets due to buckle strength and impact loads increased as compared to the corrugated sheets without fibres. This study has shown that asbestos can be replaced by these fibres, in the fabrication of corrugated roofing sheets.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sinchai Chinvorarat ◽  
Pumyos Vallikul

Purpose The purpose of this paper is to present a novel retractable main landing gear for a light amphibious airplane, while the design, synthesis and analysis are given in details for constructing the main landing gear. Design/methodology/approach The constraint three-position synthesis has given the correct path of all linkages that suitably fit the landing gear into the compartment. The additional lock-link is introduced into the design to ensure the securement of the mechanism while landing. Having the telescopic gas-oil shock strut as a core element to absorb the impact load, it enhances the ability and efficiency to withstand higher impact than others type of light amphibious airplane. Findings By kinematics bifurcation analysis, the optimized value of the unlock spring stiffness at 90 N/m can be found to tremendously reduce the extended-retracted linear actuator force from 500 N to 150 N at the beginning of the retraction sequence. This could limit the size and weight of the landing gear actuator of the light amphibious airplane. Practical implications The drop test of the landing gear to comply with the ASTM f-2245 (Standard Specification for Design and Performance of a Light Sport Airplane) reveals that the novel landing gear can withstand the impact load at the drop height determined by the standard. The maximum impact loading 4.8 G occurs at the drop height of 300 mm, and there is no sign of any detrimental or failure of the landing gear or the structure of the light amphibious airplane. The impact settling time response reaches the 2% of steady-state value in approximately 1.2 s that ensure the safety and stability of the amphibious airplane if it subjects to an accidentally hard landing. Originality/value This paper presents unique applications of a retractable main landing gear of a light amphibious airplane. The proposed landing gear functions properly and complies with the drop test standard, ensuring the safety and reliability of the airplane and exploiting the airworthiness certification process.


2015 ◽  
Vol 1106 ◽  
pp. 225-228 ◽  
Author(s):  
Stanislav Rehacek ◽  
Petr Hunka ◽  
David Citek ◽  
Jiri Kolisko ◽  
Ivo Simunek

Fibre-reinforced composite materials are becoming important in many areas of technological application. In addition to the static load, such structures may be stressed with short-term dynamic loads or even dynamic impact loads during their lifespan. Impact loading of structural components produces a complex process, where both the characteristics of the design itself and the material parameters influence the resultant behavior. It is clear that fibre reinforced concrete has a positive impact on increasing of the resistance to impact loads. Results of two different impact load tests carried out on drop-weight test machine are presented in this report.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xintian Liu ◽  
Que Wu ◽  
Shengchao Su ◽  
Yansong Wang

PurposeThe properties of materials under impact load are introduced in terms of metal, nonmetallic materials and composite materials. And the application of impact load research in biological fields is also mentioned. The current hot research topics and achievements in this field are summarized. In addition, some problems in theoretical modeling and testing of the mechanical properties of materials are discussed.Design/methodology/approachThe situation of materials under impact load is of great significance to show the mechanical performance. The performance of various materials under impact load is different, and there are many research methods. It is affected by some kinds of factors, such as the temperature, the gap and the speed of load.FindingsThe research on mechanical properties of materials under impact load has the characteristics as fellow. It is difficult to build the theoretical model, verify by experiment and analyze the data accumulation.Originality/valueThis review provides a reference for further study of material properties.


2010 ◽  
Vol 154-155 ◽  
pp. 1100-1103
Author(s):  
Ru Shu Peng ◽  
De Wen Tang ◽  
Qiong Liu

On the property of repeated impact load, the attrition, hardening and plasticity warp of the laser cladding sampling were researched by using stress wave spread theory. Results show that under repeated impact loads, stress wave occurs on the metallurgical joint surface of the coat and the basis, forming stretch wave that causes coat slitting and angle splitting. The micro-pits failure and deep exfoliation occur on the coat surface because of the stress centralization. The accumulation of impact load energy cause hardness change and plasticity warp.


Author(s):  
Kshitij P. Gawande ◽  
Phillip Wiseman ◽  
Alex Mayes

Whenever undesirable dynamic events occur within power plant, refinery, or process piping systems, specialty supports and restraints have the task of protecting the mechanical equipment and connecting piping from damaging loads and displacements. The array of components that may be affected include, but are not limited to, piping systems, pumps, valve assemblies, pressure vessels, steam generators, boilers, and heat exchangers. In particular, the dynamic events can be classified into two distinct types that originate from either internal events or external events. The internal dynamic load generating events include plant system start-up and shut-down, pressure surges or impacts from rapid valve closures such as steam and water hammer, boiler detonations, pipe rupture, and operating vibratory displacements that may be either low frequency or high frequency vibrations. The external dynamic load generating events include wind loads, earthquake, airplane impact to supporting structures and buildings, and explosions. Most of the aforementioned dynamic load generating events can be defined quite simply as impact loads, i.e., forces and moments that are applied over very short periods of time, for example, less than one second. While earthquake loads may be applied over a total time period of an hour or so, the peak loads and resulting displacements occur on a more sinusoidal basis of peak-to-peak amplitudes. One of the most common specialty restraint components utilized in the piping industry to absorb and transfer the dynamic load resulting from impact events is the hydraulic shock suppressor, otherwise known as the snubber. The snubber is a formidable solution to protecting plant piping systems and equipment from impact loading while not restricting the thermal displacements during routine operations. In the dynamic events that may be characterized by an impact type loading, snubbers provide an instantaneous, practically rigid, axial connection between the piping or other component to be secured and the surrounding structure whether it be concrete or steel (for example). In this way, the kinetic energy can be transmitted and harmlessly dissipated. In the vibratory environment, however, neither the impact load scenario nor the rapid translations are imposed upon snubbers, thereby presenting the competing intended application of the snubber to protect against impact loads versus, in many cases, the improper selection of the snubber to dampen vibratory (other than seismic) loads. The details of the hydraulic shock suppressor design are reviewed and discussed to exemplify why a case can and should be made against the use of snubbers in piping systems within an operating vibratory environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaohong Long ◽  
Ahmed Turgun ◽  
Rong Yue ◽  
Yongtao Ma ◽  
Hui Luo

Impact loads may cause serious or even fatal damage to the structure (component), in most existing specifications in China, and there are no special terms that take impact load into consideration. So, the response analysis of the structure (component) under impact loads is very important. In this paper, the sensitivity analysis was conducted for the 22 parameters of the Holmquist–Johnson concrete (HJC) constitutive model of concrete, and the sensitive parameters of the HJC model are identified with A, B, G, Pl, μl, and fc respectively. LS-DYNA nonlinear transient finite element analysis code was used for this paper. Based on the validation of finite element modeling and choosing midspan deflection of RC beams and impact loads as response indices, some influencing factors on RC beams under falling weight impact were investigated, such as the mass and speed of falling weight, impact position, the strength of concrete and rebar, longitudinal reinforcement ratio, and the span of the beam.


2018 ◽  
Vol 199 ◽  
pp. 11010 ◽  
Author(s):  
Marcus Hering ◽  
Manfred Curbach

Textile reinforced concrete, especially textile reinforced concrete with carbon fibres, was already been used for strengthening steel reinforced concrete structures under static loads up to now. The question is if the composite can also be used for strengthening structures against impact loads. The main goal of a current research project at the Technische Universität Dresden is the development and characterization of a reinforcement fabric with optimized impact resistance. But there is a challenge. There is the need to find the best combination of fibre material (glass, carbon, steel, basalt, …) and reinforcement structure (short fibres, 2D-fabrics, 3D-fabrics, …), but testing the large number of possible combinations is not possible with the established methods. In general, large-scale tests are necessary which are very expensive and time consuming. Therefore, a new testing method has been developed to deal with this large number of possible combinations of material and structural experiments. The following paper describes this new testing method to find the best fabric reinforcement for strengthening reinforced concrete structures against impact loads. The testing devise, which is located in the drop tower facility at the Otto Mohr Laboratory, and the test set-up are illustrated and described. The measurement equipment and the methods to evaluate the experimental results are explained in detail.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Qixiang Yan ◽  
Zhixin Deng ◽  
Yanyang Zhang ◽  
Wenbo Yang

Impact loads generated by derailed trains can be extremely high, especially in the case of heavy trains running at high speeds, which usually cause significant safety issues to the rail infrastructures. In shield tunnels, such impact loads may not only cause the damage and deformation of concrete segments, but also lead to the failure of segmental joint bolts. This paper presents a numerical study on the failure behavior of segmental joint bolts in the shield tunnel under impact loading resulting from train derailments. A three-dimensional (3D) numerical model of a shield tunnel based on the finite element (FE) modelling strategy was established, in which the structural behavior of the segmental joint surfaces and the mechanical behavior of the segmental joint bolts were determined. The numerical results show that the occurrence of bolt failure starts at the joints near the impacted segment and develops along the travel direction of train. An extensive parametric study was subsequently performed and the influences of the bolt failure on the dynamic response of the segment were investigated. In particular, the proposed FE model and the analytical results will be used for optimizing the design method of the shield tunnel in preventing the failure of the joint bolts due to the impact load from a derailed HST.


Sign in / Sign up

Export Citation Format

Share Document