scholarly journals Failure Characteristics of Joint Bolts in Shield Tunnels Subjected to Impact Loads from a Derailed Train

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Qixiang Yan ◽  
Zhixin Deng ◽  
Yanyang Zhang ◽  
Wenbo Yang

Impact loads generated by derailed trains can be extremely high, especially in the case of heavy trains running at high speeds, which usually cause significant safety issues to the rail infrastructures. In shield tunnels, such impact loads may not only cause the damage and deformation of concrete segments, but also lead to the failure of segmental joint bolts. This paper presents a numerical study on the failure behavior of segmental joint bolts in the shield tunnel under impact loading resulting from train derailments. A three-dimensional (3D) numerical model of a shield tunnel based on the finite element (FE) modelling strategy was established, in which the structural behavior of the segmental joint surfaces and the mechanical behavior of the segmental joint bolts were determined. The numerical results show that the occurrence of bolt failure starts at the joints near the impacted segment and develops along the travel direction of train. An extensive parametric study was subsequently performed and the influences of the bolt failure on the dynamic response of the segment were investigated. In particular, the proposed FE model and the analytical results will be used for optimizing the design method of the shield tunnel in preventing the failure of the joint bolts due to the impact load from a derailed HST.

1981 ◽  
Vol 8 (4) ◽  
pp. 409-415
Author(s):  
John B. Kennedy ◽  
K. J. Iyengar

The deformation response of floating ice sheets under high intensity, short duration loads is examined. Using a rigid-plastic theory, together with a Tresca yield criterion, expressions are derived for the total time of response and the final deformed configuration of floating ice sheets. The influence of the magnitude of the impact load and the load-contact radius on the various design quantities such as deflection profile and stress distribution is discussed. Based on the results derived, a design method is presented to find the safe thickness of a floating ice sheet to sustain a given impact load. The method is illustrated with a numerical example.


Author(s):  
Mehdi Elhimer ◽  
Aboulghit El Malki Alaoui ◽  
Kilian Croci ◽  
Céline Gabillet ◽  
Nicolas Jacques

The phenomenon of slamming on a bubbly liquid has many occurrences in marine and costal engineering. However, experimental or numerical data on the effect of the presence of gas bubbles within the liquid on the impact loads are scarce and the related physical mechanisms are poorly understood. The aim of the present paper is to study numerically the relationship between the void volume fraction and the impact loads. For that purpose, numerical simulations of the impact of a cone on bubbly water have been performed using the finite element code ABAQUS/Explicit. The present results show the diminution of the impact loads with the increase of the void fraction. This effect appears to be related to the high compressibility of the liquid-gas mixture.


2021 ◽  
Vol 11 (23) ◽  
pp. 11223
Author(s):  
Bin Hu ◽  
Jian Cai ◽  
Jiabin Ye

By using the ABAQUS finite element (FE) model, which has been verified by experiments, the deformation and internal force changes of RC columns during the impact process are investigated, and a parametric analysis is conducted under different impact kinetic energies Ek. According to the development path of the bottom bending moment-column top displacement curve under impact, the member is in a slight damage state when the curve rebounds before reaching the peak and in a moderate or severe damage state when the curve exceeds the peak, in which case the specific damage state of the member needs to be determined by examining whether there is a secondary descending stage in the curve. Accordingly, a qualitative method for evaluating the bending failure of RC column members under impact is obtained. In addition, the damage state of RC columns under impact can also be quantitatively evaluated by the ratio of the equivalent static load Feq and the ultimate static load-bearing capacity Fsu.


Author(s):  
Kshitij P. Gawande ◽  
Phillip Wiseman ◽  
Alex Mayes

Whenever undesirable dynamic events occur within power plant, refinery, or process piping systems, specialty supports and restraints have the task of protecting the mechanical equipment and connecting piping from damaging loads and displacements. The array of components that may be affected include, but are not limited to, piping systems, pumps, valve assemblies, pressure vessels, steam generators, boilers, and heat exchangers. In particular, the dynamic events can be classified into two distinct types that originate from either internal events or external events. The internal dynamic load generating events include plant system start-up and shut-down, pressure surges or impacts from rapid valve closures such as steam and water hammer, boiler detonations, pipe rupture, and operating vibratory displacements that may be either low frequency or high frequency vibrations. The external dynamic load generating events include wind loads, earthquake, airplane impact to supporting structures and buildings, and explosions. Most of the aforementioned dynamic load generating events can be defined quite simply as impact loads, i.e., forces and moments that are applied over very short periods of time, for example, less than one second. While earthquake loads may be applied over a total time period of an hour or so, the peak loads and resulting displacements occur on a more sinusoidal basis of peak-to-peak amplitudes. One of the most common specialty restraint components utilized in the piping industry to absorb and transfer the dynamic load resulting from impact events is the hydraulic shock suppressor, otherwise known as the snubber. The snubber is a formidable solution to protecting plant piping systems and equipment from impact loading while not restricting the thermal displacements during routine operations. In the dynamic events that may be characterized by an impact type loading, snubbers provide an instantaneous, practically rigid, axial connection between the piping or other component to be secured and the surrounding structure whether it be concrete or steel (for example). In this way, the kinetic energy can be transmitted and harmlessly dissipated. In the vibratory environment, however, neither the impact load scenario nor the rapid translations are imposed upon snubbers, thereby presenting the competing intended application of the snubber to protect against impact loads versus, in many cases, the improper selection of the snubber to dampen vibratory (other than seismic) loads. The details of the hydraulic shock suppressor design are reviewed and discussed to exemplify why a case can and should be made against the use of snubbers in piping systems within an operating vibratory environment.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040001 ◽  
Author(s):  
Wensu Chen ◽  
Thong M. Pham ◽  
Mohamed Elchalakani ◽  
Huawei Li ◽  
Hong Hao ◽  
...  

Basalt fiber-reinforced polymer (BFRP) has been applied for strengthening concrete structures. However, studies on reinforced concrete (RC) slabs strengthened by BFRP strips under impact loads are limited in open literature. This study investigates the efficiency of using BFRP strips with various strengthening layouts and anchoring schemes on the impact resistance of RC slabs. A total of 11 two-way square slabs were prepared and tested, including one reference specimen without strengthening and ten slabs strengthened with BFRP strips and/or anchors. The RC slabs were impacted by a drop weight with increasing height until slab failure. The observed failure modes include punching shear failure, BFRP sheet debonding and reinforcement fracture. The failure modes and the effects of using various strengthening schemes on the impact resistant capacity of RC slabs were examined. The quantitative measurements, such as impact velocity, indentation depth and diameter, were compared and discussed. In addition, numerical studies were carried out by using LS-DYNA to simulate the impact tests of RC slabs with and without BFRP strengthening. With the calibrated numerical model, the impact behavior of slabs with various dimensions and strengthening layouts under different impact intensities can be predicted with good accuracy.


2020 ◽  
pp. 096739112097008
Author(s):  
Mengjia Li ◽  
Puhui Chen

A finite element model with periodic boundary conditions was developed to investigate the influence of different Z-pin parameters including diameter, spacing, and insertion angle of Z-pin on the elastic properties of composite laminates. Benchmark tests were carried out to verify the FE model and a series of parametric analyses were subsequently performed. In general, all the elastic moduli, excluding the through-thickness modulus ( Ez), decreased while Ez increased nonlinearly with increasing Z-pin diameter and decreasing spacing. The reduction of Ey (transverse modulus) was approximately 40% of that of Ex (longitudinal modulus), while the reduction of Gxy is similar to that of Ex. Besides, Gxz and Gyz were reduced by approximately half of the reduction of Gxy. Although the impact of insertion angle was obvious on Ez, it was negligible on the other five moduli.


Author(s):  
Matthieu Ancellin ◽  
Laurent Brosset ◽  
Jean-Michel Ghidaglia

Understanding the physics of sloshing wave impacts is necessary for the improvement of sloshing assessment methodology based on sloshing model tests, for LNG membrane tanks on floating structures. The phase change between natural gas and liquefied natural gas is one of the physical phenomena involved during a LNG wave impact but is not taken into account during sloshing model tests. In this paper, some recent numerical and analytical works on the influence of phase change are summarized and discussed. For the impact of an ideally shaped wave, phase change influences two different steps of the impact in different ways: during the gas escape phase, phase change leads to a higher impact velocity; for entrapped gas pockets, phase change causes a reduction of the pressure in the gas pocket. However, this influence is quantitatively small. The generalization to more realistic wave shapes (including e.g. liquid aeration) should be the focus of future works.


2018 ◽  
Vol 9 (2) ◽  
pp. 37
Author(s):  
Yousry B. I. Shaheen ◽  
Ghada Mousa Hekal ◽  
Ahmed Khaled Fadel

The main objective of the following work is to inspect the effect of reinforcing metal mesh on the behavior of slabs with openings under impact loadings. Based on an earlier numerical study by Shaheen et al. (2017), slabs with mid-side openings revealed the worst behavior regarding to deflection and cracked pattern when subjected to impact loading compared to other slabs with different locations of openings. Hence, the present work focuses specifically on this type of slabs and the variation in their behavior when reinforced by welded or expanded metal mesh. Seven specimens were prepared and tested in Faculty of Engineering, Menoufia University, Egypt. Moreover, a FE model for the slabs was built using Abaqus 6.14 and verified against test results. It was found that expanded metal mesh had a significant effect on reducing deflection due to impact load as well as controlling of cracks in contrast with welded metal mesh.


Author(s):  
Tanvir Mehedi Sayeed ◽  
Bruce Colbourne ◽  
Heather Peng ◽  
Benjamin Colbourne ◽  
Don Spencer

Iceberg/bergy bit impact load with fixed and floating offshore structures and supply ships is an important design consideration in ice-prone regions. Studies tend to divide the iceberg impact problem into phases from far field to contact. This results in a tendency to over simplify the final crucial stage where the structure is impacted. The authors have identified knowledge gaps and their influence on the analysis and prediction of iceberg impact velocities and loads (Sayeed et. al (2014)). The experimental and numerical study of viscous dominated very near field region is the main area of interest. This paper reports preliminary results of physical model tests conducted at Ocean Engineering Research Center (OERC) to investigate hydrodynamic interaction between ice masses and fixed offshore structure in close proximity. The objective was to perform a systematic study from simple to complex phenomena which will be a support base for the development of subsequent numerical models. The results demonstrated that hydrodynamic proximity and wave reflection effects do significantly influence the impact velocities at which ice masses approach to large structures. The effect is more pronounced for smaller ice masses.


Sign in / Sign up

Export Citation Format

Share Document