scholarly journals Electric Ferry Ecosystem for Sustainable Inter-Island Transport in Philippines: A Pilot Study

2018 ◽  
Vol 8 (6) ◽  
pp. 3570-3575
Author(s):  
E. V. Palconit ◽  
M. L. S. Abundo

An electric boat system as a pilot study for the electric ferry was designed and field-tested in Samal Island, Philippines, to verify sustainability for inter-island transport. This pilot study uses 4.5m monohull with a displacement weight of 343kg. During the experiment, two cases were compared: in the first case the boat was powered solely with batteries and in the other case with the aid of photovoltaic (PV) modules. For the first case, 24V electric propulsion was driven by two 12V, 100Ah batteries, which resulted to a navigational range of around 18, 16 and 15 trips with energy consumption of 111.64Wh, 117.19Wh and 123.92Wh respectively. In the second case, the photovoltaic modules were attached on the boat to supplement the PV used while on sail. Results in the second case showed that PV module supplemented energy was about to 13.4%, 26.8% and 38.7% using three different speeds like 3.18, 3.32 and 3.84knots and the navigational range extended to 4km, 1km, and 14.4km respectively. Therefore, the electric boat with the aid of PV module answers the problem in the energy management system that deals with the sustainability of the system in the inter-island transport in Philippines.

2019 ◽  
Vol 9 (20) ◽  
pp. 4280
Author(s):  
Joseph Appelbaum ◽  
Avi Aronescu ◽  
Tamir Maor

Photovoltaic modules integrated into buildings may provide shading to windows, doors and walls to protect against sun rays and at the same time generate ancillary electrical energy. The study develops the methodology for calculating the shadow variation cast by overhangs on doors, windows, carports, and calculates the annual incident energy (beam, diffuse and global energy) on overhangs made up of conventional and bifacial PV modules. The methodology of the present study is different from published articles including software programs. The study starts with shadows on walls cast by a horizontal pole and follows by shadows on walls cast by horizontal plates, inclined pole, inclined plate, and shaded area. The study deals also with overhangs placed one above the other. The calculation of the diffuse radiation involves the calculation of view factors to sky, to ground and between overhangs. In addition, the present study suggests using bifacial PV modules for overhangs and calculates the contribution of the reflective energy (5% and more) from walls and ground to the rear side of the bifacial PV module.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 671 ◽  
Author(s):  
Victor Gutierrez-Martinez ◽  
Carlos Moreno-Bautista ◽  
Jose Lozano-Garcia ◽  
Alejandro Pizano-Martinez ◽  
Enrique Zamora-Cardenas ◽  
...  

This paper presents the development of a heuristic-based algorithm for a Home Electric Energy Management System (HEEMS). The novelty of the proposal resides in the fact that solutions of the Pareto front, minimizing both the energy consumption and cost, are obtained by a Genetic Algorithm (GA) considering the renewable energy availability as well as the user activity level (AL) inside the house. The extensive solutions search characteristic of the GAs is seized to avoid the calculation of the full set of Pareto front solutions, i.e., from a reduced set of non-dominated solutions in the Pareto sense, an optimal solution with the best fitness is obtained, reducing considerably the computational time. The HEEMS considers models of the air conditioner, clothes dryer, dishwasher, electric stove, pool pump, and washing machine. Models of the wind turbine and solar PV modules are also included. The wind turbine model is written in terms of the generated active power exclusively dependent on the incoming wind profiles. The solar PV modules model accounts for environmental factors such as ambient temperature changes and irradiance profiles. The effect of the energy storage unit on the energy consumption and costs is evaluated adapting a model of the device considering its charge and discharge ramp rates. The proposed algorithm is implemented in the Matlab® platform and its validation is performed by comparing its results to those obtained by a freeware tool developed for the energy management of smart residential loads. Also, the evaluation of the performance of the proposed HEEMS is carried out by comparing its results to those obtained when the multi-objective optimization problem is solved considering weights assigned to each objective function. Results showed that considerable savings are obtained at reduced computational times. Furthermore, with the calculation of only one solution, the end-user interaction is reduced making the HEEMS even more manageable than previously proposed approaches.


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Vandana Jha ◽  
Uday Shankar Triar

This paper proposes an improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic modules. A new concept “Level of Improvement” has been proposed for evaluating unknown parameters of the nonlinear I-V equation of the single-diode model of PV module at any environmental condition, taking the manufacturer-specified data at Standard Test Conditions as inputs. The main contribution of the new concept is the improvement in the accuracy of values of evaluated parameters up to various levels and is based on mathematical equations of PV modules. The proposed evaluating method is implemented by MATLAB programming and, for demonstration, by using the values of parameters of the I-V equation obtained from programming results, a PV module model is build with MATLAB. The parameters evaluated by the proposed technique are validated with the datasheet values of six different commercially available PV modules (thin film, monocrystalline, and polycrystalline) at Standard Test Conditions and Nominal Operating Cell Temperature Conditions. The module output characteristics generated by the proposed method are validated with experimental data of FS-270 PV module. The effects of variation of ideality factor and resistances on output characteristics are also studied. The superiority of the proposed technique is proved.


Author(s):  
Nsed Ayip Akonjom ◽  
John Iyang Umuji ◽  
Ukoette Jeremiah Ekah

This central idea of this research is to investigate how voltage, current, power output and efficiency of polycrystalline photovoltaic (PV) modules installed in a Guinea Savanna and Mangrove Swamp is affected by temperature, relative humidity and irradiance. The study locations are Calabar (mangrove swamp) and Ogoja (guinea savanna), in Cross River State, Nigeria. Two polycrystalline PV modules of exact specification mounted on a platform one-metre-high above the ground were used. A digital solar power meter (SM206) and a digital solar flux meter (MS 6616) was used to monitor and measure solar power and solar flux reaching the PV modules. A digital hygrometer and thermometer (KT-908) were used to monitor and measure the relative humidity and ambient temperature level at the height of installation and a digital multimeter (M880C+) accompanied with a temperature sensor was used to monitor voltage, current and panel temperature values from the modules. Analysis of the collected data reveals that the efficiency of the modules were not constant throughout the day. However, a higher voltage production and efficiency level was obtained for the PV module installed in Ogoja than that installed in Calabar under their respective levels of relative humidity, temperature and irradiance.


Author(s):  
V. Nakhodov ◽  
O. Borychenko ◽  
A. Cherniavskyi

Statistics show that energy is one of the highest operating costs in a manufacturing enterprise. So, improving energy efficiency can lead to a significant increase in profits and reduce the impact of the enterprise on the environment. To increase the performance of energy efficiency activities, it is necessary to implement an energy management system. One of the components of this system is energy monitoring, which, in turn, is based on the periodic collection and analysis of data to assess the state of the monitoring objects in terms of energy efficiency. In this paper, the role and place of energy monitoring in the energy management system of an industrial enterprise are noted. The paper proposes the concept of creating energy monitoring system in industrial companies, which is based on the combination of a monitoring system based on specific energy consumption, and usage of group energy characteristics of production facilities. Implementing such energy monitoring systems will allow to conduct operational control of energy efficiency of production facilities by creating individual systems for monitoring energy efficiency, as well as successfully carry out such monitoring at the enterprise and its subdivisions over longer periods of time using specific energy consumption indicators. It also provides general guidelines for conducting energy monitoring. These guidelines were formed based on the results of studying various methods and scientific publications in the field of energy monitoring, as well as on the basis of practical experience in the development and implementation of energy management systems. Particular attention is paid to the issues of processing and analysis of information about the objects of energy monitoring of industrial enterprises. The practical application of the concept of creating energy monitoring systems envisages gradual improvement of the existing monitoring system based on the specific energy consumption, which will be further completely replaced with individual energy efficiency monitoring systems.


Author(s):  
C. Calò ◽  
A. Lay-Ekuakille ◽  
P. Vergallo ◽  
C. Chiffi ◽  
A. Trotta ◽  
...  

One of the most important aspects of photovoltaic modules is reliability for future uses, that is, a certain module will last certain number of years in use (generally 30 or 35 years). Reliability yields from excellent qualification tests on photovoltaic (PV) modules. Testing for reliability identifies unknown failure mechanisms and whether modules are susceptible to known failure mechanisms. This paper illustrates techniques of outdoor measurements and qualification characterization to know PV module conditions for commercial uses. Matrix methods are used for energy prediction. Failure material tests, using digital imaging and thermography, have also been conducted.


Author(s):  
Vasily G. Moshnyaga

With the explosive use of personal computers or PCs, reducing computer energy consumption is paramount for sustainability. The display is the largest energy consumer in a personal computer. Current display energy management technologies ignore the attention of the PC user and therefore may either switch the display off when the user looks at the screen or lose energy by keeping the display on when nobody looks at it. This chapter discusses a new display energy management technology and outlines its implementation in a personal computer system. Unlike existing technologies, which “sense” a PC user through keyboard and/or mouse or the other sensors, this technology “watches” the user through a single camera or CMOS vision sensor. The technology tracks the user’s eyes, keeping display active only if the user looks at its screen. Otherwise, it dims the display down or even switches it off to save energy. The authors implemented the technology in software and hardware and present the results of their experimental evaluation.


2019 ◽  
Vol 118 ◽  
pp. 03049
Author(s):  
Yilian Tang ◽  
Ming Li ◽  
Xun Ma

The aim of this study was to investigate the effect of PV modules mounted on top of a greenhouse, on the growth of strawberries and microclimate conditions as well as to estimate the generated energy. In this study, two greenhouses with the same volume were established. One greenhouse was equipped with the opaque photovoltaic (OPV) modules which accounted for 25.9% of the roof area, and the other was equipped with the semi-transparent photovoltaic (STPV) modules which accounted for 20% of the roof area. The maximum annual power generation of OPV and STPV modules was 880 and 388 kWh with 30° tilt angle, respectively, by simulating different tilt angles. The temperature under the OPV and STPV modules was 2.9 and 1.1 °C lower than the unshaded part in the greenhouses, respectively, at noon in clear weather, and had little effect on relative humidity. The photosynthetically active radiation (PAR) under OPV and STPV modules was reduced by 43.5% and 31.7%, respectively, under the PE film greenhouse. The contents of soluble solids in strawberries in OPV and STPV greenhouses were 16.4 and 15.7 mg/g respectively, which were higher than those in unshaded samples. The quality and yield of the strawberry samples under the shade of OPV were better than those of the STPV shade.


Sign in / Sign up

Export Citation Format

Share Document