scholarly journals Contribution of Particles Size Ranges to Sand Friction

2013 ◽  
Vol 3 (4) ◽  
pp. 497-501 ◽  
Author(s):  
E. Mostefa Kara ◽  
M. Meghachou ◽  
N. Aboubekr

This work studies the correlation between certain physical properties of granular material such as the friction angle and the grain size distribution. In the laboratory, the determination of friction angle requires hard and expensive testing. Prediction of this parameter from the grading curve proves to be very interesting. Direct shear tests were performed on actual marine sand of Tergha (Algeria) and on seventeen different samples arranged from the same sand with various particle size ranges. Results showed that the friction angle of sand is a result of contribution of various constituent granular classes.

2021 ◽  
Vol 5 (2) ◽  
pp. 125
Author(s):  
Mohammad Afrazi ◽  
Mahmoud Yazdani

Many geotechnical problems require the determination of soil engineering properties such as shear strength. Therefore, the determination of the reliable values for this parameter is essential. For this purpose, the direct shear test, as one of the oldest tests to examine the shear strength of soils, is the most common way in laboratories to determine the shear parameters of soil. There are far too many variables that influence the results of a direct shear test. In this paper, a series of 10 × 10 cm direct shear tests were carried out on four different poorly graded sands with different particle size distributions to determine their shear behaviors. Four different poorly graded sands with a different median diameter or medium value of particle size distribution (D50) (0.2, 0.53, 1.3, and 2.3 mm) has been selected, and about 40 direct shear tests were conducted. It was concluded that a soil’s friction angle is affected by coarse-grained material. Accordingly, sandy soils with bigger particle sizes record a higher friction angle than soils containing small particles. The investigations also showed that sand with bigger particle sizes has a higher dilation angle. In addition, a non-linear regression analysis was performed to establish the exact relationship between the friction angle of the soil and the characteristics of the soil particles. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2019 ◽  
Vol 56 (2) ◽  
pp. 208-227 ◽  
Author(s):  
Samaneh Amirpour Harehdasht ◽  
Mahmoud N. Hussien ◽  
Mourad Karray ◽  
Varvara Roubtsova ◽  
Mohamed Chekired

Upon close scrutiny of data reported in the literature, taking into account particle-scale characteristics to optimize the precision of the well-known empirical Bolton’s equations and imposing particle-size limits on them is recommended. The present paper examines the potential influence of particle size and grading on the shear strength–dilation relation of granular materials from the results of 276 symmetrical direct shear tests. The applicability of physical symmetrical direct shear tests to interpret the plane strain frictional shearing resistance of granular materials has been widely discussed using the discrete element method (DEM) computer code SiGran. Sixteen different grain-size distribution curves of three different materials were tested at different normal pressures and initial relative densities. It is demonstrated that while the contribution of dilatancy to shear strength is not influenced by the variation in the coefficient of uniformity, Cu, in the investigated range, it significantly decreases with increasing mean particle size, D50. The coefficients of Bolton’s equations have been, therefore, adjusted to account for D50. A comparison of the predictions by the proposed empirical formulas with plane strain friction angle, [Formula: see text], and dilation angle, ψ, data from the literature shows that accounting for the grain size yields more accurate results.


CivilEng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 35-50
Author(s):  
Akram Deiminiat ◽  
Li Li

The determination of shear strength parameters for coarse granular materials such as rockfill and waste rocks is challenging due to their oversized particles and the minimum required ratio of 10 between the specimen width (W) and the maximum particle size (dmax) of tested samples for direct shear tests. To overcome this problem, a common practice is to prepare test samples by excluding the oversized particles. This method is called the scalping scaling down technique. Making further modifications on scalped samples to achieve a specific particle size distribution curve (PSDC) leads to other scaling down techniques. Until now, the parallel scaling down technique has been the most popular and most commonly applied, generally because it produces a PSDC parallel and similar to that of field material. Recently, a critical literature review performed by the authors revealed that the methodology used by previous researchers to validate or invalidate the scaling down techniques in estimating the shear strength of field materials is inappropriate. The validity of scaling down techniques remains unknown. In addition, the minimum required W/dmax ratio of 10, stipulated in ASTM D3080/D3080M-11 for direct shear tests, is not large enough to eliminate the specimen size effect (SSE). The authors’ recent experimental study showed that a minimum W/dmax ratio of 60 is necessary to avoid any SSE in direct shear tests. In this study, a series of direct shear tests were performed on samples with different dmax values, prepared by applying scalping and parallel scaling down techniques. All tested specimens had a W/dmax ratio equal to or larger than 60. The test results of the scaled down samples with dmax values smaller than those of field samples were used to establish a predictive equation between the effective internal friction angle (hereafter named “friction angle”) and dmax, which was then used to predict the friction angles of the field samples. Comparisons between the measured and predicted friction angles of field samples demonstrated that the equations based on scalping scaling down technique correctly predicted the friction angles of field samples, whereas the equations based on parallel scaling down technique failed to correctly predict the friction angles of field samples. The scalping down technique has been validated, whereas the parallel scaling down technique has been invalidated by the experimental results presented in this study.


2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


2021 ◽  
Vol 20 (2) ◽  
pp. 332-345
Author(s):  
Gökhan Altay ◽  
◽  
Cafer Kayadelen ◽  
Taha Taskiran ◽  
Baki Bagriacik ◽  
...  

The parameters concerning the interaction between geocell and granular materials is required for the design of many geotechnical structures. With this in mind, a series of experiments using simple direct shear tests are conducted in order to understand the frictional properties between geocells filled with granular materials. The 54 test samples are prepared by filling the geocell with granular materials having three different gradations. These samples are tested at three different relative densities under three different normal stress levels. As a result, it was observed that interface resistance between the geocells filled with granular material is found to be generally greater than in the samples without geocells. Additionally, these samples with geocells are found to be stiffer; this is due to the fact that the samples with geocell gained more cohesion because geocells confined the grains within a restricted volume.


1988 ◽  
Vol 25 (3) ◽  
pp. 500-510 ◽  
Author(s):  
J. K. M. Gan ◽  
D. G. Fredlund ◽  
H. Rahardjo

Multistage direct shear tests have been performed on saturated and unsaturated specimens of a compacted glacial till. A conventional direct shear apparatus was modified in order to use the axis-translation technique for direct shear tests on unsaturated soils. The soil can be subjected to a wide range of matric suctions. The testing procedure and some typical results are presented. Nonlinearity in the failure envelope with respect to matric suction was observed. Suggestions are made as to how best to handle the nonlinearity from a practical engineering standpoint. Key words: shear strength, unsaturated soils, negative pore-water pressures, soil suction, direct shear.


2021 ◽  
Author(s):  
Omar Al hattamleh ◽  
Abdulla Sharo’ ◽  
Laith Abu Shanab ◽  
Hussein Aldeeky ◽  
Reyad Al Dwairi

Abstract In this study, the effect of the quasi rate of loading in the crushing of black tough sand will be studied experimentally. The experimental works will be conducted at different normal stresses, different relative densities, and different rates of loading using the direct shear tests. All test specimens were prepared with uniformly graded sand, passing sieve #4, and retained sieve #8.The results of direct shear tests were used to investigate the factors influencing the amount of particle breakage and consequently the friction angle. After shearing of each specimen, sieve analysis was performed in order to determine the percentage of particle breakage. Results showed that the rate of loading in direct shear plays a significant role in the amount of crushing and in internal friction angles. The amount of crushing as well as shear strength was increased with the increased rate of loading. Moreover, microstructural analysis used scanning electron microscopy (SEM) analysis shown that the crushing from granular have primarily resulted from disintegration, grinding and abrasion of particles.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ping Jiang ◽  
Jian Qian ◽  
Na Li

The resource utilization of iron tailings is of great significance for all countries in the world. Considering the particle composition and physicochemical characteristics of iron tailings, fiber and lime were used to modify iron tailings. The fiber content was 0%, 0.25%, 0.5%, 0.75%, and 1%, and the lime content was 0%, 2%, 4%, 8%, and 10%, respectively. Through a direct shear test, the shear stress displacement (τ-δ) curves and shear strength of modified iron tailings, under the action of a 0 freeze-thaw cycle and 1 freeze-thaw cycle, were tested. As statistics have shown that there are uncertainty factors associated with direct shear tests, the shear strength index cohesion c and internal friction angle φ of the modified iron tailings were analyzed using the Monte Carlo method. The results show that the τ-δ curve of the fiber-modified iron tailings is a hardening-type curve and that of the lime-modified iron tailings is a softening-type curve. In the direct shear tests, the main uncertain factors are the specimen diameter, vertical force, and horizontal force. The diameter of the sample obeys a normal distribution, and the vertical and horizontal forces obey a uniform distribution. The results of the Monte Carlo simulation show that both c and φ obey a normal distribution. Under a 95% confidence condition, the effect of fiber on the cohesion on iron tailings is obvious, but the effect on the internal friction angle is not obvious. However, the values of c and φ of the iron tailings are clearly improved by lime. Additionally, the iron tailings modified by a fiber content of 1% and those modified by a lime content of 8% have the best frost resistance.


Sign in / Sign up

Export Citation Format

Share Document