scholarly journals Survey on Performance of Multipath Routing Protocol in Wireless Sensor Network

Author(s):  
Vaishali Thorat ◽  
Dr. Lalitkumar Wadhwa ◽  
Dr. Satish Kumar

As we know Wireless Sensor Network is the perfect solution for quick capturing, processing and transmission of critical data. Sensor nodes are often deployed in generous environment but nodes suffer from low battery power. So, energy efficiency and network life are main concerns in WSN. Zig Bee have low cost, low power consumption and is beneficial in wireless sensor networks by selecting adequate communication protocol. Routing protocols like AODV (Ad- hoc on demand distance vector routing), ZTR (Zig Bee tree routing), and STR (Shortcut tree routing) and ESTR (Extended Shortcut tree routing) are compared on the idea of various performance metrics like end to finish delay, routing overload, throughput, packet delivery ratio (PDR). The mathematical analysis and performance evaluation shows that ESTR achieves better performance as compared to other routing protocols. The overall evaluation shows that ESTR achieves better performance as compared to other routing protocols. But there are some limitations of ESTR method. Performance of packet delivery ratio of STR is less as compared to AODV. Performance of end to end delay of STR is poor as compared to AODV. Extended STR is proposed to represent new ZigBee network routing protocol with improved performance of Packet Delivery ratio (PDR) and delay against STR and AODV. We are introducing here Efficient Extended Shortcut Tree Routing method (ESTR) for further improvement of delays of ESTR method.

2021 ◽  
Author(s):  
R. Thiagarajan ◽  
V. Balajivijayan ◽  
R. Krishnamoorthy ◽  
I. Mohan

Abstract Underwater Wireless Sensor Network offers broad coverage of low data rate acoustic sensor networks, scalability and energy saving routing protocols. Moreover the major problem in underwater networks is energy consumption, which arises due to lower bandwidth and propagation delays. An underwater wireless sensor network frequently employs acoustic channel communications since radio signals not worked in deep water. The transmission of data packets and energy-efficient routing are constraints for the unique characteristics of underwater. The challenging issue is an efficient routing protocol for UWSNs. Routing protocols take advantage of localization sensor nodes. Many routing protocols have been proposed for sensing nodes through a localization process. Here we proposed a Novel vector-based forwarding and efficient depth-based routing protocol. The proposed novel vector-based forwarding provides robust, scalable, and energy-efficient routing. It easily transfers nodes from source to destination. It adopts the localized and distributed alternation that allows nodes to weigh transferring packets and decreases energy consumption and provides better optimal paths. Efficient depth-based routing is a stochastic model that will succeed in a high transmission loss of the acoustic channel. The simulation was used to compare the energy consumption, network lifetime in the form of depth-based routing, delivery ratio, and vector-based forwarding to prove the optimal route finding paths and data transmission propagation delay.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.


Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


2013 ◽  
Vol 291-294 ◽  
pp. 2532-2536
Author(s):  
Han Hua Yang

Multi path routing protocol plays important part in the multi hop heterogeneous wireless sensor network. To get better performance, adaptive Wireless Senor Network Multi Path Routing Scheme (AMRH) is proposed, which is made up of three phrases: initial setup, route discovery and establishment, route maintenance. In the first phrase, every node gets the initial route table. In the second phrase, source node will find minimum-cost path among multiple paths. In the third phrase, route maintenance is conducted under adaptive mechanism. Simulation shows that AMRH scheme can prolong sensor network lifetime by 19.5%, increase data delivery ratio by 5.6%.


Repositor ◽  
2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Hawwin Purnama Akbar ◽  
Diah Risqiwati ◽  
Diah Risqiwati

Perkembangan ilmu pengetahuan pada bidang teknologi jaringan terjadi sangat cepat karena mengikuti perkembangan kebutuhan manusia. Salah satu teknologi jaringan yang saat ini menarik perhatian masyarakat adalah teknologi Wireless Sensor Network(WSN). WSN adalah jaringan dari kumpulan sensor yang terhubung menggunakan teknologi wireless secara ad-hoc dan setiap sensor node digunakan untuk proses pengumpulan data dan menghubungkan dengan node yang lain melalui jaringan wireless.Karena pada kebanyakan kasus aplikasi WSN digunakan pada lingkungan yang ekstrem dan sensor node harus dapat beroperasi secara otomatis tanpa campur tangan manusia, jaringan ini menjadi rentan akan beberapa ancaman jaringan dan dapat mempengaruhi performa dari jaringannya. Terdapat berbagai macam jenis serangan yang dapat membahayakan jaringan wireless sensor network diantaranya yang paling umum adalah sybil attack dan hello flood attack.            Dalam penelitian ini, penulis meneliti performa WSN saat diserang oleh Sybil attack dan hello flood attack dengan cara mengukur throughput, PDR(packet delivery ratio), jitter dan delay dalam jaringan WSN. Penelitian ini juga menganalisa jumlah node yang bervariasi dari 10 node sampai 30 node dengan waktu simulasi dari 10 detik sampai 30 detik lalu dianalisa jaringan ketika jaringan normal dan diserang oleh node penyerang yang bervariasi dari 1 sampai 3 penyerang. Dengan melakukan analisa tersebut, diperoleh data berupa perbandingan dampak serangan dari Sybil attack dan hello flood attack. Dampak dari sybil attack lebih berpengaruh pada parameter throughput dan pdr yang mengalami penurunan nilai hingga 69,9% untuk pdr dan 56,4% untuk throughput. Sedangkan dampak dari hello flood attack lebih berpengaruh pada parameter delay dan jitter yang mengalami kenaikandari nilai semula 0,05 detik menjadi 0,576 detikuntuk delay dan 0,579 detik untuk jitter.AbstractThe development of science in the field of network technology occurs very quickly because it follows the development of human needs. One of the network technology that is currently attracting public attention is wireless sensor network technology (WSN). WSN is a network of connected sensors using ad-hoc wireless technology and each node sensor are used to process data collection and connect with other nodes over a wireless network. Because in most cases WSN applications are used in extreme environments and node sensors must operate automatically without human intervention, these networks become vulnerable to some network threats and may affect the performance of their networks. There are various types of attacks that can harm wireless sensor network network among the most common is sybil attack and hello flood attack.             In this study, authors examined the performance of WSN when attacked by Sybil attack and hello flood attack by measuring throughput, PDR (packet delivery ratio), jitter and delay in WSN network. This study also analyzed the number of nodes that varied from 10 nodes to 30 nodes with simulated time from 10 seconds to 30 seconds and then analyzed the network when the network was normal and attacked by the attacking nodes that varied from 1 to 3 attackers. By doing the analysis, the datacan be obtained in the form of comparison of the impact of attacks from Sybil attack and hello flood attack. The impact of the sybil attack is more influential on the parameters of throughput and pdr which has decreased the maximum value up to 69.9% for pdr and 56.4% for throughput. While the impact of hello flood attack ismore influential on the delay and jitter parameters that increased from the original value of 0.05 seconds to 0.576 seconds for delay and 0.579 seconds for jitter. 


Sign in / Sign up

Export Citation Format

Share Document